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Abstract

Two results related to Mulholland inequality are
presented. First, there are functions that are not
geo-convex but solve Mulholland inequality; thus
Mulholland’s condition is not necessary. Second,
the set of functions that solve Mulholland inequal-
ity is not closed with respect to compositions. As a
corollary, the dominance relation on the set of strict
triangular norms is not transitive.
The proofs of both the results are of geomet-

ric nature and benefit from the level set plots of
the pseudo-additions generated by the functions in
question.
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1. Introduction

Mulholland inequality is a functional inequality
which has been introduced by H. P. Mulholland
in his paper [11] from 1950 as a generalization of
the Minkowski inequality which represents the tri-
angular inequality for p-norms. In the same pa-
per, Mulholland has also provided a sufficient con-
dition for the fulfillment of the inequality. Later, in
1984, Tardiff has shown that Mulholland inequal-
ity is closely related to the relation of dominance
between strict triangular norms and has provided a
different sufficient condition [21]. In 1999 Schweizer
posed a question [19] on comparing Mulholland’s
and Tardiff’s condition. This question has been
answered in 2002 by Jarczyk and Matkowski who
demonstrated [7] that the Tardiff’s condition im-
plies Mulholland’s condition. An alternative proof
has been also given by Baricz [3] in 2010.
The two following questions have however re-

mained open:

Question 1.1 Is Mulholland’s condition also nec-
essary?

Question 1.2 Is the set of functions solving Mul-
holland inequality closed with respect to their com-
positions?

In this paper we intend to bring the answers. Re-
call that since Mulholland inequality is closely re-
lated to the dominance relation on the set of strict

A BA+X B +X

F (A+X)− F (A)

F (B +X)− F (B)

Figure 1: Illustration of the property of an increas-
ing real convex function F .

triangular norms. Therefore the answer to the sec-
ond question gives also an answer to the question
whether the dominance relation on the class of strict
triangular norms is transitive.

2. Basic notions

We denote by R+
0 the set of positive real numbers

with zero and by R+ the set of positive real numbers
without zero.

Definition 2.1 A function f : I → R, defined on a
real interval I ⊆ R, is convex resp. geo-convex (or
geometrically convex [7]) if, and only if,

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) ,
f(xα · y1−α) ≤ fα(x) · f1−α(y)

holds respectively for every x, y ∈ I and for every
α ∈ [0, 1].

Note that f is geo-convex if, and only if, F =
log ◦f ◦ exp is convex. Note also that if f is con-
vex, or if it is an increasing bijection, then it is,
necessarily, continuous.

Definition 2.2 Let f : R+
0 → R+

0 be an increasing
bijection. The pseudo-addition generated by f is a
binary operation

∗ : R+
0 × R+

0 → R+
0

given by

x ∗f y = f−1(f(x) + f(y))
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Figure 2: Graph of the bijection f (left) and graphs
of the functions f(a x)/f(a) and f(b x)/f(b) com-
pared (right). The latter graphs are identical to the
graph of f on [0, a] and [0, b], respectively, scaled to
the unit square [0, 1]× [0, 1].

for all x, y ∈ R+
0 . A level set of ∗f in the level

a ∈ R+
0 is the set

Lfa = {(x, y) ∈ R+
0 × R+

0 | x ∗f y = a} .

A level cut of ∗f in the level a ∈ R+
0 is the set

Λfa = {(x, y) ∈ R+
0 × R+

0 | x ∗f y ≤ a} .

Notice that if f is convex then the level cuts of
∗f are convex sets.

Let S be the power-set of R+
0 ×R

+
0 . On S, the op-

eration of Minkowski sum, +: S×S → S, is defined
by

A+B = {(x+ u, y + v) | (x, y) ∈ A, (u, v) ∈ B}

for any A,B ∈ S. A positive real multiple of A ∈ S
is defined by

αA = {(αx, αy) | (x, y) ∈ A}

where α ∈ R+
0 . The following facts can be observed

for every A,B,C ∈ S and for every α, β ∈ R+
0 :

A+B = B +A ,

(A+B) + C = A+ (B + C) ,
(α+ β)A = αA+ βA ,

A ⊆ B ⇒ A+ C ⊆ B + C ,

A ⊆ B ⇒ αA ⊆ αB .

We define a relation ≤ on the set of all the level
cuts of the pseudo-addition ∗f by

Λfa ≤ Λfb iff 1
a

Λfa ⊆
1
b

Λfb .

This relation is reflexive and transitive, however, it
is not anti-symmetric. Thus ≤ is a pre-order.

3. Mulholland inequality and Mulholland’s
condition

An increasing bijection f : R+
0 → R+

0 is said to
solve Mulholland inequality if

f−1(f(x+u)+f(y+v))

≤ f−1(f(x) + f(y)) + f−1(f(u) + f(v)) (1)

holds for all x, y, u, v ∈ R+
0 . Using the notion of

pseudo-addition, we reformulate the formula above
to

∀x, y, u, v ∈ R+
0 : (x+u)∗f (y+v) ≤ (x∗fy)+(u∗fv) .

As you can see, we have obtained the definition
of the dominance relation between the operations
+ and ∗f . Therefore, f : R+

0 → R+
0 satisfies Mul-

holland inequality if, and only if, + dominates the
pseudo-addition ∗f generated by f .

Further, using the notion of level cuts, we refor-
mulate the Mulholland inequality formula to

∀a, b ∈ R+
0 : Λfa + Λfb ⊆ Λfa+b . (2)

The latter inequality allows an intuitive geometric
representation which is illustrated in Figure 3.

ByMI we denote the set of all the bijections that
solve Mulholland inequality. In his paper [11], Mul-
holland has provided the following sufficient condi-
tion:

Theorem 3.1 Let f : R+
0 → R+

0 be an increasing
bijection. If both f and log ◦f ◦ exp are convex, i.e.,
if f is convex and geo-convex, then f ∈MI.

By MC we denote the set of all increasing bi-
jections on R+

0 that comply with Mulholland’s con-
dition, i.e., that are convex and geo-convex. The
result of Mulholland presented in Theorem 3.1 can
be stated as MC ⊆MI. The question we are deal-
ing with is whether also MI ⊆MC. The condition
of f being convex is necessary [11]. Thus, we need
to find the answer whether the condition of f being
geo-convex is necessary, as well.

4. Geo-convexity and k-subscalability

Let f : R+ → R+ be an increasing bijection and let
F = log ◦f ◦ exp; then F is an increasing bijection
on R. By the definition, f is geo-convex if, and
only if, F is convex. Figure 1 illustrates that F is
convex if, and only if,

∀A,B,X ∈ R, A ≤ B :

F (A+X)−F (A) ≤ F (B +X)−F (B) . (3)

As a corollary, f is geo-convex if, and only if,

∀a, b, x ∈ R+, x ≤ 1, a ≤ b : f(a x)
f(a) ≥

f(b x)
f(b) (4)
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Λ∗a Λ∗b Λ∗a+bΛ∗a Λ∗b Λ∗a+b

Figure 3: Geometric representation of the Mulhol-
land inequality on the level set plot of the pseudo-
addition generated by f : x 7→ x2. Taking a level cut
Λ∗a and shifting it so that its bottom-left corner co-
incides with the border of Λ∗b , the whole figure must
remain within the borders of the level cut Λ∗a+b.

(see an illustration in Figure 2). We weaken
this property by introducing a new notion of k-
subscalability. We say that, for a given k ∈ R+

0 , an
increasing bijection f : R+

0 → R+
0 is k-subscalable if

∀a, b, x ∈ R+, x ≤ 1, b− a ≥ k : f(a x)
f(a) ≥

f(b x)
f(b) .

(5)
Note that f is geo-convex if, and only if, it is 0-
subscalable.
We present further the following characterization

of convex increasing bijections on R+
0 that are geo-

convex.

Proposition 4.1 [15, Proposition 13] Let
f : R+

0 → R+
0 be a convex increasing bijection.

Then it is geo-convex if, and only if, there exists
a sequence (gi : R+

0 → R+
0 )i∈N of power functions

gi : x 7→ qi x
pi , pi, qi ∈ R+

0 , pi ≥ 1, such that

f =
∨
i∈N

gi .

5. Larger class of functions solving
Mulholland inequality

As it has been proven [12], if

∀x ∈ R+, x ≤ 1: f(a x)
f(a) ≥

f(b x)
f(b)

for some given a, b ∈ R+
0 , a ≤ b, then we have

Λfa + Λfb ⊆ Λfa+b . (6)

Therefore, if a convex increasing bijection f : R+
0 →

R+
0 is k-subscalable for some k ∈ R+

0 then we
have (6) for every a, b ∈ R+

0 such that both a and
b are greater than or equal to k. Thus, we want to

a b a+ b

a

b

a+ b

Λ∗a Λ∗b Λ∗a+b∆a Λ∗b Λ∗a+b

Figure 4: If Λ∗a = ∆a then Λ∗a + Λ∗b ⊆ Λ∗a+b always
holds for pseudo-additions generated by convex in-
creasing bijections.

find a sufficient condition such that (6) holds also
if a < k or b < k. We present here a rather simple
one; we believe, however, that this condition is not
necessary and that the problem deserves a further
investigation.

Proposition 5.1 [12] Let f : R+
0 → R+

0 be a con-
vex increasing bijection that is linear on the interval
[0, k] for some k ∈ R+

0 , i.e., if there exists r ∈ R+

such that f(x) = r x for all x ∈ [0, k]. Then we
have Λfa + Λfb ⊆ Λfa+b for every a, b ∈ R+

0 such that
a ≤ k or b ≤ k.

This idea of the proposition is illustrated in Fig-
ure 4. As a corollary, we obtain the following theo-
rem:

Theorem 5.2 [12] Let f : R+
0 → R+

0 be a convex
increasing bijection which, for some k ∈ R+

0 , is k-
subscalable and linear on the interval [0, k]. Then f
solves Mulholland inequality, i.e., f ∈MI.

For a given k ∈ R+
0 , we denote by Sk the set

of all k-subscalable bijections and by Lk the set of
all bijections that are linear on [0, k]. Further, we
introduce the set LSk = Lk ∩ Sk and the set

LS =
⋃
k∈R+

0

LSk .

Thus, the set LS represents all the functions that
accord with the assumptions of Theorem 5.2. Ac-
cording to the results described here, we have
MC ⊆ LS ⊆MI since LS0 = MC.

Example 5.3 The increasing bijection f : R+
0 →

R+
0 is defined, for all x ∈ R+

0 , as

g(x) =


5
3x if x ∈ [0, 1] ,
7
3x−

2
3 if x ∈ ]1, 2] ,

x2 if x ∈ ]2,∞[ .

The graph of the function g is illustrated in Figure 5
and the generated pseudo-addition ∗g is illustrated
in Figure 6.
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Figure 5: Left: Graph of the bijection g given by
Example 5.3 which is 1-subscalable and 1-linear but
not geo-convex.

Proposition 4.1 implies that g /∈ MC. Moreover,
the previous result [12] has shown that g ∈ MI.
Therefore Example 5.3 shows that MC ( LS.
Notice that the question whether LS ( MI or

LS = MI remains still open although we conjecture
that the first case is the true.

6. Mulholland inequality and dominance of
strict triangular norms

Definition 6.1 A triangular norm (or a t-norm
for short) [2, 9] is a commutative, associative, and
non-decreasing binary operation ∗ : [0, 1] × [0, 1] →
[0, 1] with neutral element 1. A t-norm is said
to be strict if there exists a decreasing bijection
ϕ : [0, 1]→ [0,∞] such that

x ∗ y = ϕ−1 (ϕ (x) + ϕ (y))

for all x, y ∈ [0, 1]; the bijection ϕ is then called the
generator of ∗.

T-norms are studied nowadays mainly in the
framework of the basic logic [5, 6] and the monoidal
t-norm based logic [4] which are both prototypi-
cal fuzzy logics; particularly, the real unit interval
[0, 1] endowed with a strict t-norm is isomorphic to
the standard semantics of the product logic which
is a special case of the basic logic. Nevertheless,
originally the t-norms have been introduced within
the framework of probabilistic metric spaces [18, 10]
where they establish the triangular inequality of the
probabilistic metrics.
Dominance is a binary relation on a set of n-ary

operations. Particularly, a t-norm ∗ dominates a

1 2

1

2

x

y

x+ y

5x+5y+2
7

x+ y − 2
7

√
7x+7y−4

3

√
x2 + y2

x+ 5
7y

5
7x+ y

√
7x+5y−2

3

√
5x+7y−2

3

√
x2 + 5

3y

√
5
3x+ y2

√
x2 + 7

3y −
2
3

√
7
3x+ y2 − 2

3

Figure 6: Scheme of the functional values of the
pseudo-addition generated by the bijection g given
by Example 5.3.

t-norm �, denoted by ∗ � �, if

∀x, y, u, v ∈ [0, 1] : (x�y)∗(u�v) ≥ (x∗u)�(y∗v) .

The motivation to study dominance of t-norms
comes from Tardiff [22] who recognized that dom-
inance plays an important role when constructing
Cartesian products of probabilistic metric spaces.
Tardiff has also shown that the dominance of strict
t-norms is closely related to Mulholland inequal-
ity [21, Theorem 3].

Proposition 6.2 Let ∗1 : [0, 1]× [0, 1]→ [0, 1] and
∗2 : [0, 1] × [0, 1] → [0, 1] be two strict t-norms
given by the generators ϕ1 : [0, 1] → [0,∞] and
ϕ1 : [0, 1]→ [0,∞], respectively, i.e.,

x ∗1 y = ϕ−1
1 (ϕ1 (x) + ϕ1 (y)) ,

x ∗2 y = ϕ−1
2 (ϕ2 (x) + ϕ2 (y))

for x, y ∈ [0, 1]. Then ∗2 dominates ∗1, i.e., ∗1 �
∗2, if, and only if, f = ϕ2 ◦ ϕ−1

1 solves Mulholland
inequality.

Let us remark that, recently, this correspondence
has been enlarged to all continuous Archimedean
triangular norms [13].

It can be checked easily that the dominance re-
lation is reflexive and anti-symmetric. Neverthe-
less, it remained an open question for a long time
whether it is also transitive, and thus an order re-
lation [1, Problem 17]. This question has been
answered recently by Sarkoci [16] who has given
a negative answer for general continuous t-norms.
However, for the class of strict t-norms the ques-
tion remained open. Nevertheless, it has been re-
vealed [8, 14, 17, 20] that for many significant sub-
classes of strict t-norms the dominance relation is
transitive. Proposition 6.2 implies the following.
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Figure 7: Illustration of the level set plot of the
pseudo-addition ∗g generated by the function g from
Example 7.1 with denoted level sets in question.

Proposition 6.3 The dominance relation on the
set of strict t-norms is transitive if the set MI is
closed with respect to compositions; this means that
if f1 ∈MI and f2 ∈MI then also f1 ◦ f2 ∈MI.

7. The set LS is not closed with respect to
compositions

Example 7.1 Let g be the function from Exam-
ple 5.3 and let h : R+

0 → R+
0 : x 7→ x2. The com-

position of these two functions, f = g ◦ h, does not
solve Mulholland inequality, i.e., f /∈MI.

This statement can be proven simply by evaluat-
ing the inequality (1), e.g., for x = y = 1 and for
u = v < 0.074. Nevertheless, we present here also
a geometric proof illustrated in Figure 7 and Fig-
ure 8. By + we denote the common real addition of
non-negative real numbers.
Consider the pseudo-additions ∗g and ∗f gener-

ated by g and f , respectively.
Figure 7 illustrates the level set plot of ∗g with

emphasized level sets in b = 12
7 and c = 2; denote

them by B and C, respectively. There are, further-
more, two line segments parallel to the level sets of
+; one passes through the point (1, 1), denote it by
E, and the second through the middle segment of
C, denote it by F . The edge vertices of E are (0, c)
and (c, 0); the edge vertices of F are (0, f) and (f, 0)
where f = 16

7 . Stress out that E and F are not level
sets of ∗g.

Figure 8 illustrates the level set plot of ∗f . Note
that it can be seen as the image of the level set plot
of g when applying the mappingm : R+

0 ×R
+
0 → R+

0
defined by

m (x, y) =
(√
x,
√
y
)
.

Observe that all the level sets in [0, 1], as well as the
images of E and F , are quarter-circles centered at

1

2

a

f ′ − c′

c′ − b′

b′ c′ f ′

√
12√
7

√
2

√
16√
7

Figure 8: Illustration of the level set plot of the
pseudo-addition ∗f generated by the function f
from Example 7.1 with denoted level sets in ques-
tion. It can be seen that the distance f ′ − c′ is
shorter than the distance a′ = c′ − b′.

(0, 0). Denote

b′ =
√
b ,

c′ =
√
c ,

a′ = c′ − b′ ,
f ′ =

√
f .

The point of the proof is to show that

Λfa′ + Λfb′ 6⊆ Λfc′ . (7)

This is indeed true since the distance l = f ′ − c′

denoted in Figure 8 is strictly shorter than a′ which
follows from the fact that x 7→

√
x is a concave

increasing bijection on R+
0 and thus from

c− b = f − c

follows
√
c−
√
b <

√
f −
√
c .

According to Example 5.3 we have g ∈ LS and ac-
cording to Proposition 4.1 we have h ∈ MC. Thus
g and h give us an example of two functions which
solve Mulholland inequality but their composition
does not.

8. Concluding remarks

A new condition which is sufficient in order to give
a solution for Mulholland inequality has been in-
troduced. Moreover, this new condition delimits
strictly more solutions than the one of Mulholland.
However, it still remains an open question whether
this new condition describes all the possible solu-
tions of Mulholland inequality. We conjecture that
this is not the case.

Further, it has been shown that the set LS, as
well as the set MI, is not closed with respect to
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compositions. As it can be easily verified, the set
MC is closed. Thus there is an interesting open
question what is the maximal subset of MI that is
closed with respect to compositions.
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