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Abstract

This paper is a continuation of our previous works on
geometric similarity measures between Atanassov’s in-
tuitionistic fuzzy sets (A-IFSs for short). We consider
some traps of the straightforward approach in the case
of A-ISs while similarity is understood as a dual con-
cept of a distance. The difficulties are a result of, first,
the symmetry of the three terms (the membership, non-
membership and hesitation margin) in an A-IFS element
description, and second, of an important role played by
those three terms in the definition of the complement
of the A-IFS which should be taken into account in the
similarity measures.

Keywords: Intuitionistic fuzzy sets, distances, similar-
ity measures

1. Introduction

It is not possible to overestimate the importance of sim-
ilarity measures - they are used in many algorithms, but
even the best algorithm can not produce satisfactory re-
sults when similarity measures used are not reliable.

This paper is continuation of our previous works
on distances and similarity measures for A-IFSs (cf.
Szmidt and Kacprzyk [15], [18], [17], [19], [20], [21],
[24]). We consider similarity at the basic level, i.e., sim-
ilarity of the elements belonging to an A-IFS, character-
ized by the membership, non-membership and hesita-
tion margin, and next - similarity of the A-IFSs assum-
ing that their elements are represented geometrically (as
points in a coordinate space). Similarity is usually as-
sumed to be a dual notion to a distance. However the ad-
equacy of the geometric approach with its assumptions
(symmetry, transitivity, ...) especially from a psycho-
logical point of view changes for different practical sit-
uations (sometimes a property is useful, sometimes un-
desirable). For example, we can say (cf. Tversky [30]):
“the portrait resembles the person” rather than “the per-
son resembles the portrait”. Anyway, the geometric ap-
proach is rather popular and has been successfully ap-
plied to real problems (e.g., Carroll and Wish [8], Shep-
ard [11]).

In this paper we consider if straightforward geometri-
cal approach to similarity (as a dual notion of a distance)
is sufficient for considering similarity between the A-
IFSs. After pointing out some difficulties we emphasize
the necessity of including into the definition of similarity
a concept of a so called complement element introduced
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by Atanassov [3] to be presented in Section 2. We con-
sider some similarity measures with different types of
distances.

2. A brief introduction to the A-IFSs

One of the possible generalizations of a fuzzy set in X
(Zadeh [34]) given by

A = {<x Uy (x) > [xe X} (M

where (1, (X) € [0, 1] is the membership function of the

fuzzy set A, is an A-IFS (Atanassov [1], [3], [4]) Ais
given by

A= {< X, pda(X),va(x) > [x € X} )
where: ta : X — [0,1] and va : X — [0, 1] such that
0<HA(X) + va(x)<1 3)

and pa(X), Va(X) € [0, 1] denote a degree of membership
and a degree of non-membership of X € A, respectively.

Obviously, each fuzzy set may be represented by the
following A-IFS

A={<X Uy (X), 1 —py(X) > [xeX} (4

An additional concept for each A-IFS in X, that is not
only an obvious result of (2) and (3) but which is also
relevant for applications, we will call (Atanassov [3])

TA(X) = 1 — HA(X) — VA(X) (5)
a hesitation margin of x € A which expresses a lack
of knowledge of whether X belongs to A or not (cf.
Atanassov [3]). It is obvious that 0<Ta(X)< 1, for each
xe X.

The hesitation margin turns out to be important while
considering the distances (Szmidt and Kacprzyk [14],
[15], [19], entropy (Szmidt and Kacprzyk [16], [22]),
similarity (Szmidt and Kacprzyk [21]) for the A-IFSs,
etc. i.e., the measures that play a crucial role in virtually
all information processing tasks.

Hesitation margins turn out to be relevant for applica-
tions - in image processing (cf. Bustince et al. [7], [6])
and classification of imbalanced and overlapping classes
(cf. Szmidt and Kukier [27], [28], [29]), group deci-
sion making, negotiations, voting and other situations
(cf. Szmidt and Kacprzyk papers).
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Figure 1: Geometrical representation

In our further considerations on similarity we will use
the notion of the complement of an A-IFS, denoted by
AC, and defined as (cf. [3]):

AC = {< x,VA(X), Ha(X) > |x € X}. (6)

and X: (Va(X), Ha(X)) is called a complement element.

2.1. A geometrical representation

One of possible geometrical representations of an A-IFS
is given in Figure 1 (cf. Atanassov [3]). It is worth
noticing that although we use a two-dimensional figure
(which is more convenient to draw in our further con-
siderations), we still adopt our approach (e.g., Szmidt
and Kacprzyk [15], [19], [16], [22]), [21]) taking into
account all three terms (membership, non-membership
and hesitation margin values) describing an A-IFS. Any
element belonging to an A-IFS may be represented in-
side an MNO triangle. In other words, the MNO tri-
angle represents the surface where the coordinates of
any element belonging to an A-IFS can be represented.
Each point X belonging to the MNO triangle is therefore
described by the respective values on the three coordi-
nates: (Ma(.),Va(.),Ma(.)). Points M and N represent
the crisp elements. Point M(1,0,0) represents elements
fully belonging to an A-IFS as i = 1, and may be seen
as the representation of the ideal positive element. Point
N(0,1,0) represents elements fully not belonging to an
A-IFS as v =1, i.e. can be viewed as the ideal nega-
tive element. Point O(0,0, 1) represents elements about
which we are not able to say if they belong or not belong
to an A-IFS (the intuitionistic fuzzy index 1= 1). Such
an interpretation is intuitively appealing and provides
means for the representation of many aspects of imper-
fect information. Segment MN (where 1= 0) represents
elements belonging to the classic fuzzy sets (U+V = 1).
For example, point x;(0.2,0.8,0) (Figure 1), like any
element from segment MN represents an element of a
fuzzy set. A line parallel to MN describes the elements
with the same values of the hesitation margin. In Fig-
ure 1 we can see point X3(0.5,0.1,0.4) representing an
element with the hesitation margin equal 0.4, and point

841

%2(0.2,0,0.8) representing an element with the hesita-
tion margin equal 0.8. The closer a line that is parallel
to MN is to O, the higher the hesitation margin.

3. Similarity measures between the A-IFSs

In the case of fuzzy sets a distance is assumed to be a
dual measure to similarity expressed as Smilarity=1—
distance.

Definition A distance on a set X is a positive function d
(also called a metric) from pairs of elements of X to the
set R™ of non-negative real numbers with the following
properties for all X, X%, X3 € X:

1. d(x1,x;) = 0 (reflexivity);

2. d(x1,%) = 0if and only if X; = X, (identity);

3. d(x1,%) = d(x, X1 ) (symmetry);

4. d(x1,%3) < d(X1,%) + d(X,%3) (triangle inequal-

The pair (X, d) is called a metric space.

We will examine now the effects of using a distance
as a dual notion to similarity for A-IFSs.

3.1. Some intrinsic difficulties

In Szmidt and Kacprzyk [23] we have shown that the
(1-Hamming distance) between the A-IFSs should not
be used as a similarity measure between them.

The normalized Hamming distance between the A-
IFSs AB in X = {X;,...,X} (cf.  Szmidt and
Kacprzyk [15], [19], Szmidt and Baldwin [12, 13]):

n

n 3 () — )|+

+  [va(Xi) —ve(X%)| +
+ (%) — 1B(%)]).

irs(AB) =

(7

For (7) we have: 0<l|gs(A,B)<1. Clearly the normal-
ized Hamming distance (7) satisfies the conditions of the
metric.

The corresponding similarity measure is therefore:

Smy =1-1lirs(AB) =

n

1 g 3 () — ol +

+ Jva(X) = ve(X)| + M) — 1B(X))).  (8)

Figures 2 and 3 show that for a fixed membership
value we have elements at the same distance from el-
ement (1,0,0). The situation repeats while we exam-
ine distances to any element X : (U, v, 7T) making use of
the normalized Hamming distance. We receive the same
type of shapes (Figures 2 and 3) pointing out the ele-
ments equally distant from a fixed element.

Now we will demonstrate the result of using the ((1-
normalized Euclidean distance) between the A-IFSs as
a similarity measure.



Figure 2: Values of similarity (8) for any element from
an A-IFS and element (1, 0, 0)
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Figure 3: Contourplot of (8) for any element from an
A-IFS and element (1, 0, 0)

For the two A-TIFS Aand Bin X = {X;,Xy, ..., Xn}, their
normalized Euclidean distance is equal to (cf. Szmidt
and Kacprzyk [15], [19]):

n

Z(UA(Xi) — ps(%))* +

1
e|FS(A7 B) - (%I

+ (va(x) —va(x))?

_|_

+ () — T8(x)))?, ©)
and its counterpart similarity measure would be:
Sme(AB) = 1-ers(AB)=
— 1 3 ) o))+
+ (va(k) = va(x))* +
+ () — TB(x))) (10)

The results obtained from (10) are illustrated in Fig-
ures 4 and 5. Expressing similarity via distances means
looking for geometrical shapes, and while using (10) we
look in fact for elements at a “radius” distance from a
chosen element (object). It is obviously a correct ap-
proach (looking for some shapes in a coordinate space)
but we should make too far a conclusion about similar-
ity as a dual measure of a distance as it is shown in the
following example.

Example For simplicity let us consider “degenerated”,
“one point type” A-IFS sets which full descriptionis A=
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Figure 4: Shape of Sime(A, B) (10) for any element from
an A-IFS and (1, 0, 0)

Figure 5: Contourplot of (10) for any element from an
A-IFS and (1, 0, 0)

< X, Ua, Va, TT> /1 exemplified by: MyN,L in X = {1}.

M =(1,0,0)/1, N=(0,1,0)/1, H=(0,0,1)/1

From (10) we obtain:
Sme(M,N) =0, and
Sm(M,H)=0
though N and H are obviously different. But the “the ra-
dius length” from M to N is equal to the “radius length”
from M to H. It is easy to accept for a crisp case that
the elements on a circle are in the same distance from
the middle of the circle which does not mean that all the
elements belonging to the circle are “the same”. Here
we have the same situation.

We should also be cautious when considering similar-
ity of the elements with the symmetry of terms in their
description, e.g.:

M =(1,0,0)/1, K=(0.5,0.3,0.2)/1,

L=(0.5,0.2,0.3)/1

for which the exchange of “the places” between non-
membership value and hesitation margin in K and L re-
sults in SmMe(M,K) = Smg(M, L) although for sure K
and L are different but “the radiuses” MK and ML are
the same.

In our previous works (Szmidt and Kacprzyk [15],
[19], [25]) we have shown that from a practical point of



view it is necessary to take into account all three terms
describing an A-IFS while calculating distances. But
it is interesting to verify the results of “two term dis-
tances” between the A-IFSs and their effects as the dual
measures to similarity. We will examine the “two term”
normalized Hamming and Euclidean distances.

The normalized Hamming distance between the A-
IFSs A,Bin X = {X;,..., X} while we use two terms
only:

: i<|uA<m—uB<m|+

2n;
+ [va(x) — ve(x)])-

lHop(AB) =
(11)

For (11) we have: 0<lyop(A,B)<1. The normalized
Hamming distance (11) satisfies the conditions of the
metric.

The corresponding similarity measure is:

Smyp =1—IHp(AB) =

n

- 1- %;(Iuﬁx(m) — ps(%)| +

+ [va(xi) = ve(x)]).

(12)

Figure 6: Values obtained from (12) for any element
from an A-IFS and (1, 0, 0)

Figure 7: ContourPlot of (12) for any element from and
A-IFSand (1, 0, 0)

For the A-IFSs A and B in X = {X;,X,...,Xn}, their
normalized Euclidean distance while using two terms
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describing the A-IFSs is:

1 n

en(AB) = (553 (HalX) — Ha(x))"+
+ (va(x) = ve(x))})?, (13)
and its corresponding similarity measure would be:
Smep(AB) = 1-ep(AB)=
1 (g 3 (el )+
(14)

Figure 8: Values obtained from (14) for any element
from A-IFS and (1, 0, 0)

Figure 9: ContourPlot of (14) for any element from A-
IFSand (1, 0, 0)

Figures 6-9 show that by making use of two term dis-
tances as dual concepts of similarity measures the sit-
uation does not change in the sense of the information
obtained (certainly we do not suggest here that in gen-
eral both ways of A-IFSs representations are equal hav-
ing in mind other drawbacks of two term representation
as compared to three term representation of A-IFSs - cf.
Szmidt and Kacprzyk [25]).

Another similarity measure that is often used in prac-
tice is the cosine similarity measure which is based on
Bhattacharya’s distance [5], [10] and is expressed as the
inner product of two vectors divided by the product of
their lengths. In other words it is the cosine of the angle
between two vectors. The cosine similarity is often used



in information retrieval [10]. Taking as a point of de-
parture the three term A-IFS representation, the cosine
similarity measure is given by (15).

n

_Z((I-‘A(Xi)l-lB(Xi) +

! 1
Sn}'ﬂ.ﬂt(Aa B) = ﬁ

+ va(X)ve(X) + Ta(xi)T(Xi))/

1

/o (HAGG)? + VA()? + Ta(xi))2

1

(us(x)* +ve(x)* +1B(x)*)?) (15

In Figures 10 and 11 there are values obtained from (15)

which illustrate similarity of element (1,0,0) and any
other element.

It is worth mentioning again that in (15) we might
change the places of v and 11, and the result of (15) will
be the same although we consider quite different situa-
tions. This is clearly some undesired effect.

Example Let us consider again “degenerated” A-IFS
sets the full description of which is A= {< X, Ua, Va, TT>
/1} exemplified by: MR Sin X = {1}. Where

M = (1,0,0)/1, and

R=(0.5,0.3,0.2)/1, S=(0.5,0.2,0.3)/1

From (15) we obtain:

Smpyt(M,R) = Smpyt (M, S) = 0.81 whereas Rand S
are obviously different, so we assume that their similar-
ity to the same M should be different, too.

Measure (15) is not able to differentiate, e.g., be-
tween: (0,0,1), and (0, 1,0) while examining their sim-
ilarity to (1,0,0) (cf. Figures 10 and 11). Certainly, we
may point out many such cases in respect to (15).

Figure 10: Values obtained from measure (15) for any
element from an A-IFS and (1, 0, 0)

It is necessary to emphasize again that the above mea-
sures give correct answers in the sense of the formula
used (geometrical shapes are recognized in respect to a
chosen element) but in many situations we would expect
that from the similarity measures we would be able at
least to notice the existence of the complement element
which seems to be the least similar to the considered el-
ement.

The problem of symmetry between the membership,
non-membership and hesitation margin (cf. Szmidt and
Kreinovich [26]) in the above formulas can be partly
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Figure 11: Contourplot of measure (15) for any element
from an A-IFS and (1, 0, 0)

I

Figure 12: Values obtained from measure (16) for any
element from an A-IFS and (0.7, 0.2, 0.1)

removed by introducing into these definitions of the
measures of similarity not only a relation to an ele-
ment we are interested in but also that to its comple-
ment. The following formulas were proposed (Szmidt
and Kacprzyk [19], [21], [24]).

Sm(lies(X,F),lies(X,F©)) =
= 11— f(||Fs(X,F),|IFS(XaFC)) =
Lies(X,F)

= 1= hes(X,F) +ligs(X,FC)’ (16)

Sm(lis(X,F), hgs(X,F€)) =
1— f(lies(X, F), lies(X, FC)

B )

1+ f(hes(X,F), Ligs(X,F©))’ 4
Sm(lies(X,F),lies(X,F©)) =

. 1-— f(||F5(X,F),|IFS(X7FC))2 (18)

- 1+f(|||:s(x,F),'IFS(XaFC))za
Sm(lies(X,F),ligs(X,F©)) =
—(liEs(X,F)ligs(X.FC)) _ o1

_ ¢ —

where

f(llFS(qu)ath(X’FC)) =

_ lirs(X,F) (20)

lies(X,F) +ligs(X,F€)”
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Figure 13: Contourplot of measure (16) for any element
from an A-IFS and (0.7, 0.2, 0.1)

Figure 14: Values obtained from (22) for any element
from an A-IFS and (0.7, 0.2, 0.1)

Function f(ligs(X,F),lies(X,FC)) (20) making use of
the Hamming distance in (16) — (19) can be replaced by
its corresponding function making use of the Euclidean
distance, i.e.:

f(ers(X,F),ars(X,FC)) =
eIFS(X»F)
ars(X,F)+ers(X,FC)

where rs(X, F) is given by (9). For example, the coun-
terpart of (16) with (21) instead of (20) is:

sm(aFS(X’F)’aFS(X7FC)) =
I —f(ars(X,F),ars(X,F%)) =
ars(X,F)
e e Fo P
In Figures 14-15 we have an illustration of the re-
sults from (22). The formulas with (21) give analogical
results to (16) — (19 in the sense of pointing out some
geometrical “shapes” but still the problem of symmetry
concerning terms (describing an A-IFS) in the formulas
was not completely solved as quite different elements
from the point of view of, for instance, decision making
are “the same” in the sense of the values obtained from
the proposed measures in respect to a chosen element.
A simple “weighting” of the terms describing the ele-
ments does not solve the problem either. In Figures 16
and 17 we have results from (22) with “weighted” mem-
bership values (in Figure 16 the membership value is

2n
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Figure 15: Contourplot of (22) for any element from an
A-IFS and (0.7, 0.2, 0.1)

two times more important, and in Figure 17 ten times
more important than the non-membership and hesita-
tion margin). The geometrical shapes pointed out by the
weighted similarity measures change (cf. Figures 15, 16
and 17).
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Figure 16: Contourplot of (22) (with two times more
important membership values) for any element from an
A-IFS and (0.7, 0.2, 0.1)
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Figure 17: Contourplot of (22) (with ten times more im-
portant membership values) for any element from an A-
IFS and (0.7,0.2,0.1)

The question arises what should be done if we wish
to use similarity measure (22) and to differentiate be-
tween elements (0.3, 0, 0.7) and (0.5, 0.4, 0.1) which



are obviously different from the point of view of deci-
sion making but both are similar to element (0.7, 0.2,
0.1) to the same extent equal to 0.6 (cf. Figures 14 and
15). First, we should not conclude about similarity of
(0.3, 0, 0.7) and (0.5, 0.4, 0.1) before calculating their
similarity from (22) — we obtain the value 0.51 (differ-
ent from 0.6).

Now we will examine another definition of similarity
using the Hausdorff distance (cf. Griinbaum [9]). The
Hausdorff distance is the maximum distance of a set to
the nearest point in the other set. A more formal de-
scription is given by the following

Definition Given two finite sets A = {a,,...,ap} and
B = {b,...,bg}, the Hausdorff distance H(A,B) is de-
fined as:

H(AB)=max{h(A.B),h(B,A)}  (23)

where
h(A,B) = rgga&crl?elgd(a, b) 24)

where:

—aand b are elements of sets A and B, respectively,
—d(a,b) is any metric between these elements,

— the two distances h(A,B) and h(B, A) (24) are called
the directed Hausdorff distances.

In Szmidt and Kacprzyk [25] we have shown that in a
case of the Hamming distance we should use the follow-
ing formula (with all three terms describing an A-IFS):

Hs (A B) =

Sl

5 s )~ o).

~—~

[Va(X) = vB(Xi)!, [Tl (xi) — Ti8(%i) |} (25)

If we apply distance (25) in the formulas (16) — (19) in-
stead of (20), we obtain new similarity measures. For
example, the counterpart of (16) with (25) instead of
(20) is:

Sm(Hs(X,F), Hs(X,FC)) =
1— f(H3(X,F),Hs(X,F)) =

Hs(X,F)
Hs (X, F) 4+ Hs(X,F¢)"

= 1—

(26)

In Figures 18 and 19 we have results from (26)

Figure 18: Values of similarity (26) for any element
from an A-IFS and element (0.7, 0.2, 0.1)
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Figure 19: Contourplot of measure (26) for any element
from an A-IFS and element (0.7, 0.2, 0.1)

The accounting for the complement elements in the
similarity measures seems important in many tasks (for
example in image recognition the most “dissimilar” im-
age is a negative image which can be understood as an
image consisting of the complement elements).

4. Conclusions

We have considered several possible geometric similar-
ity measures between the A-IFSs. Our remarks are gen-
eral but should be taken into account to obtain reliable
results. First, it is necessary to have in mind the symme-
try in the description of the A-IFS elements, and the fact
that from the knowledge of the geometric similarity of
a fixed element to two different elements we should not
conclude about the similarity of the two elements (their
similarity should be examined). We have also pointed
out that while defining similarity, viewing it just as a
a dual concept of a distance is not enough and the use
of the complement elements help attain more intuitively
appealing and reliable results.
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