

Goal Oriented Agile Unified Process (Goaup): An Educational Case Study

Jun Lin
1,2

1
School of Computer Engineering, Nanyang

Technological University, Singapore
2
College of Software, Beihang University, 37 Xueyuan

Rd., Beijing, China

e-mail: Jlin7@e.ntu.edu.sg; linjun@buaa.edu.cn

Chunyan Miao
1
, Zhiqi Shen

1
, Wei Sun

2

1
School of Computer Engineering, Nanyang

Technological University, 50 Nanyang

Avenue,Singapore

e-mail: ascymiao@ntu.edu.sg;

zqshen@ntu.edu.sg; weisun@buaa.edu.cn

Abstract—We propose a novel goal-oriented method to model

AUP software development process. Our method is based on

Goal-Net modeling theory, which can be used to model

complex process with phase goals and hierarchy goals. Our

educational practices of Goal Oriented AUP (GOAUP) for

Master of Software Engineering (MSE) students at College of

Software, Beihang University showed that the work

productivity and artifact quality can be improved by infusing

GOAUP into their course and software development process.

By analyzing and studying the educational case, our

experiences that infusing GOAUP into the software

engineering education are shared to professions and educators.

Keywords-Agile Unified Process; Goal Net; Software

Engineering Education

I. INTRODUCTION

As software development process (SDP) or software
development life cycle (SDLC) is a dynamic, continuous,
incremental, and chaotic process that is hard to be controlled.
For assuring the quality of software produced from it, people
have proposed a set of software engineering process models,
which are given high hope to solve the software crisis since
1970s. At the beginning, the plan-driven methodologies,
which focus on order and plan, such as waterfall model, V
model, and spiral model etc., were well applied into large
projects. However, excessive plan and order come with high
cost, and even led to the inhibition of users‟ requirements
and changes. After that, the research of use case-driven
methodologies, which focus on user and iteration, such as
United Software Development Process (USDP), Rational
United Process (RUP) etc., and the research of process
improvement methodologies, which focus on organization
and team maturity, such as Capability Maturity Model
(CMM), Capability Maturity Model Integration (CMMI) etc.
became very active and popular in academia and industry.
As those methodologies focus on users and team maturity, so
they have been successful in industry for a long term. But
both of them are still too planned and costly to small and
medium projects. After year 2000, with the increasing
number of development for social applications, mobile
applications and cloud SaaS applications, Agile
methodologies, such as Extreme Programming (XP), Scrum
etc., have risen strong interests in academic and industry. As
their lean, agile, and flexible characteristics are very suitable
for responding to continuous changes and fast releases,
especially in current turbulent economic environment.

The Agile software engineering or agile software
development is a group of software development methods
based on iterative and incremental development, where
requirements and solutions evolve through collaboration
between self-organizing, cross-functional teams. It promotes
adaptive planning, evolutionary development and delivery, a
time-boxed iterative approach, face to face communication
and encourages rapid and flexible response to changes.
Today, more and more companies have embraced and joined
into Agile, including almost all software giants such as
Microsoft, Google, IBM, Facebook, SAP, Oracle, Salesforce
and so on.

Sallyann and Helen listed the top 10 burning research
issues in Agile Conference (XP) 2010 voted by more than
300 practitioners and researchers[1]. Most of them are
challenges and potential directions for future agile software
engineering research and education.

In our SE research and educational practice, we want to
infuse the conceptual framework of agile software
development into traditional methodologies, for example the
Agile Unified Process (AUP[2]), a simplified version of the
IBM Rational Unified Process (RUP[3], the best-known and
extensively documented refinement of the Unified Software
Development Process, USDP[4]), which describes a simple,
easy to understand approach to develop business application
software using agile methods and concepts yet still
remaining true to the RUP, as shown in Fig. 1.

Figure 1. AUP, RUP, USDP all use incremental and iterative

development model [5]

The AUP commonly applies agile methods including
Test Driven Development (TDD), Agile Modeling (AM),

International Conference on Software Engineering and Computer Science (ICSECS2013)

© 2013. The authors - Published by Atlantis Press 36

Agile Change Management, and Database Refactoring to
improve productivity [2].

Since 2005, College of Software at Beihang University
has introduced RUP into practical course to train their team
development skill for Master of Software Engineering
(MSE). Later, in 2010 we started a new direction of Mobile
& Cloud Computing for MSE, the first class has 94 full-time
students who were trained by a tailored RUP during 2011
spring semester, and the second class (231 full-time students)
and third class (176 part-time students) were trained by a
tailored AUP in 2012 spring semester.

In this paper, we will report and sum up our research and
educational experiences, including our modeling AUP via a
Goal Oriented analysis method: Goal-Net modeling theory,
and the horizontal and vertical comparison and analysis for
our master students. The rest of this paper is organized as
follows. In Section II, we first review existing work on the
related fields, bringing the background of Agile Software
Engineering and Goal-Net theory. In Section III we
specifically describe our educational practice, result analysis,
and the corresponding case study. The final section
concludes this paper and discusses some future work.

II. LITERATURE REVIEW

A. Agile Software Engineering

Since 2001, the year of announcement of the agile
manifesto, the research community has devoted a great deal
of attention to agile methodologies. A literature search in the
ISI Web of Science2 identified 1551 research papers that
were published between 2001 and 2010 on agile software
development [6].

During this period, Abrahamsson et al. (2002) [7], Cohen
et al. (2004) [8], Erickson et al. (2005) [9], Dyba et al. (2008)
[10], and Dingsoyr et al. (2010) [11] (2012) [6] gave the
introductions to and overviews of agile methodologies
respectively. These six reports describe the state-of-the-art
and state-of-the-practice in terms of characteristics of the
various agile methods, as well as lessons learned from
applying such methods to industry at different stages.

Current Agile methodologies provide a conceptual
framework that promotes foreseen interactions throughout
the development cycle and process. The main features of
them are iterative and incremental [12].

Agile methodologies include those methods more
adaptive and active, which help software development to
increase productivity and reduce risks. They are very
effective where customer frequently changes the requirement.
Since agile development has more iteration so developer can
assure if a small modification meets customer‟s goal or not
in the working software, better than one build system in the
plan-driven process. It also involves more customer
interaction and testing effort, it tries to satisfy the customer
through early and continuous delivery of valuable software.
This is useful when developer don‟t have a clear idea of the
customer's goals. The development activities can be carried
out using the iterative actions.

Agile methodologies attempt to provide many
opportunities to assess the direction of a project throughout

the development lifecycle. This is achieved through regular
cadences of work, known as sprints or iterations, at the end
of which teams must present a shippable increment of work.
Thus by focusing on the repetition of abbreviated work
cycles as well as the functional product they yield. That‟s
why agile methodologies could be described as “iterative”
and “incremental”. Fig. 2 shows an iterative development
model.

Initial Planning

Planning

Requirements Analysis & Design

Implementation

Deployment &

Maintenance

Testing

Evaluation

Environment

Configuration &

Change Management

Figure 2. An iterative development model

In traditional waterfall development model or classical V
model, development team only has one chance to get each
aspect of the project right. But in an agile paradigm, every
aspect of development, such as requirements, design,
implementation, testing etc., is continually revisited
throughout the lifecycle. When a team stops and re-evaluates
the direction of a project every week or two weeks, there‟s
always time to steer it into another direction.

The results of this “inspect-and-adapt” approach greatly
reduce both development costs and time to market. Because
a team‟s work cycle is limited to short time, it gives
stakeholders recurring opportunities to calibrate goals and
releases for success during the process. In essence, it could
be said that the agile development methodology helps
companies build the right product. Agile empowers teams to
optimize their releases as it‟s developed, to be as competitive
as possible in the marketplace.

In general, a typical agile software development process
looks like Fig. 3.

Figure 3. A typical agile software development process

As agile software development is just a conceptual
framework for undertaking software engineering projects. So
there are a number of specific agile methods espoused by the
industry and Agile Alliance. According to the characteristics
of agile, the following methods are generally considered as
agile methods: [7]

Extreme Programming (XP) – a software development
methodology which is intended to improve software quality

37

and responsiveness to customer requirements changing. As a
type of agile software development, it advocates frequent
"releases" in short development cycles (time boxing), which
is intended to improve productivity and introduce
checkpoints where new customer requirements can be
adopted. [13]

Scrum – an iterative and incremental agile software
development method for managing software projects and
product or application development. Scrum has not only
reinforced the interest in project management, but also
challenged the conventional ideas about such management.
Scrum focuses on project management institutions where it
is difficult to plan ahead. Mechanisms of empirical process
control, where feedback loops that constitute the core
management technique are used as opposed to traditional
command-and-control oriented management. It represents a
radically new approach for planning and managing projects,
bringing decision-making authority to the level of operation
properties and certainties. [14]

Crystal Clear – a member of the Crystal family of
methodologies as described by Alistair Cockburn and is
considered an example of an agile or lightweight
methodology. It can be applied to teams of up to 6 or 8 co-
located developers working on systems that are not life-
critical. The Crystal family of methodologies focuses on
efficiency and habitability as components of project safety.
Crystal Clear focuses on people, not processes or artifacts.
[15]

Agile Modeling (AM) – a practice-based methodology
for modeling and documentation of software-based systems.
It is intended to be a collection of values, principles, and
practices for modeling software that can be applied on a
software development project in a more flexible manner than
traditional modeling methods. [16]

Agile Unified Process (AUP) – a simplified version of
the IBM Rational Unified Process (RUP) developed by Scott
Ambler. It describes a simple, easy to understand approach
to developing business application software using agile
techniques and concepts yet still remaining true to the RUP.
[2]

Dynamic Systems Development Method (DSDM) – an
agile project delivery framework, primarily used as a
software development method. First released in 1994,
DSDM originally sought to provide some discipline to the
rapid application development (RAD) method. In 2007
DSDM became a generic approach to project management
and solution delivery. DSDM is an iterative and incremental
approach that embraces principles of Agile development,
including continuous user/customer involvement. [17]

Essential Unified Process (EssUP) – it was invented by
Ivar Jacobson as an improvement on the Rational Unified
Process. It identifies practices, such as use cases, iterative
development, architecture driven development, team
practices and process practices, which are borrowed from
RUP, CMMI and agile development. The idea is that you can
pick those practices that are applicable to your situation and
combine them into your own process. This is considered an
improvement with respect to RUP, because with RUP the

practices are all intertwined and cannot be taken in isolation.
[18]

Feature Driven Development (FDD) – an iterative and
incremental software development process. It is one of a
number of Agile methods for developing software and forms
part of the Agile Alliance. FDD blends a number of industry-
recognized best practices into a cohesive whole. These
practices are all driven from a client-valued functionality
(feature) perspective. Its main purpose is to deliver tangible,
working software repeatedly in a timely manner. [19]

Kanban (development) – a method for developing
software products and processes with an emphasis on just-in-
time delivery while not overloading the software developers.
It emphasizes that developers pull work from a queue, and
the process, from definition of a task to its delivery to the
customer, is displayed for participants to see. It can be
divided into two parts: Kanban – a visual process
management system that tells what to produce, when to
produce it, and how much to produce, and the Kanban
method – an approach to incremental, evolutionary process
change for organizations. [20]

Lean Software Development (LSD) – a translation of
lean manufacturing and lean IT principles and practices to
the software development domain. Adapted from the Toyota
Production System, a pro-lean subculture is emerging from
within the Agile community. [21]

Open Unified Process (OpenUP) – a part of the Eclipse
Process Framework (EPF), an open source process
framework developed within the Eclipse Foundation. Its
goals are to make it easy to adopt the core of the RUP/USDP.
The OpenUP began with a donation to open source of
process content known as the Basic Unified Process (BUP)
by IBM. It was transitioned to the Eclipse Foundation in late
2005 and renamed OpenUP/Basic in early 2006. It is now
known simply as OpenUP. [22]

Velocity Software Development (VSD) – a measure of
productivity sometimes used in Agile software development.
Velocity tracking is the act of measuring said velocity. The
velocity is calculated by counting the number of units of
work completed in a certain interval, determined at the start
of the project. [23]

Adaptive Software Development (ASD) – focuses mainly
on the problems in developing complex, large systems. The
method strongly encourages incremental, iterative
development, with constant prototyping. Fundamentally,
ASD is about “balancing on the edge of chaos”; its aim is to
provide a framework with enough guidance to prevent
projects from falling into chaos, but not too much, which
could suppress emergence and creativity. [19]

B. Goal-Net modeling method and theory

Goal-Net theory was proposed by Shen et al. in 2004 [24,
25], which is designed to model and design goal-oriented
agents at first. Goal-Net model consists of four basic objects
or concepts: states, transitions, arcs and branches. There are
two types of states in Goal Net, composite state and atomic
state. An atomic state accommodates a single state which
cannot be split. A composite state, represented by a
shadowed circle, represents a goal and may be split into sub

38

states. States are interconnected by transitions. A transition
primarily shows the relationship between the states it joins,
specifying the task functions to be performed in a task list.
Basically there are four kinds of relationships between two
states, represented by transitions, including sequence,
concurrency, choice, and synchronization. [25]

In 2004, Shen et al. presented Goal Net to model the
goals of an agent and to model agent coordination in a multi-
agent environment. Goal Net also serves as a practical
methodology for engineering agent oriented software
systems [24]. The next year, they refined the methodology
for multi-agent system development. The new methodologies
cover the whole life cycle of the agent system development,
from requirement analysis, architecture design, and detailed
design to implementation [26]. Based on this, in 2007, Yu et
al. proposed a Goal Net Designer which is an integrated tool
and Development Environment (IDE) for modeling agent
behavior based on Goal Net model. The Goal Net Designer
provides a way for users to simplify the various stages of
agent design. It also can be used by the Multi-Agent
Development Environment (MADE) automatically to create
intelligent agents. [27]

In 2009, Zhang et al. proposed an agent planning system
based on the Goal Net model. In their system, the agent‟s
goals are identified and organized in a composite goal
hierarchy. Three kinds of relations between goals are defined:
choice, concurrency and synchronization. Actions between
goals are designed to accomplish subsequent goals. The
agent‟s desire is satisfied by accomplishing a serial of
intermediary goals and finally achieving the ultimate goal
that is satisfying the desire. The agent‟s action plan is a list
of actions to accomplish the intermediary goals in the
solution. Because Goal Net is designed by considering
agent‟s possible desires directly, their works bridged the
distance between BDI agent design and the planning system.
They also proposed a searching algorithm to select goals in
Goal Net. [28]

In 2010, Zhang et al. applied reinforcement learning
algorithms for goal selection in a Goal Net to convert an
original goal net to its counterpart that learning algorithm
can operate on. They developed a reorganization algorithm
to convert a refined goal net to a partially ordered network.
The algorithm can convert concurrency and synchronization
relationships to the choice relationship without losing any
information in the original goal net. And then a
reinforcement learning algorithm is applied to train the goal
selection of the converted goal net. Their work showed that
the goal net model can simulate motivated learning of goal
selections. [29]

Goal-Net supports goal selection and action selection
mechanism [28, 29]. Goal selection is used as the selection
mechanism for choice relationship and is affected by some
factors, such as achievement, cost, constraint and index etc.
Action selection on the other hand provides sequential, rule-
based or probabilistic inference execution for the tasks
specified in a transition.

Goal-Net model provides a rich set of relationships and
selection mechanism in providing a dynamic and highly
autonomous agent problem-solving framework. Furthermore,

a goal-oriented (GO) agent development methodology,
namely GO methodology, based on Goal Net was also
proposed in [26] by Shen et al. in 2005. GO methodology
gives agent the ability to solve a problem by decomposing it
into sub-goals. Sub-goals could be further decomposed until
the hierarchical structure and the relationships of the goals
are clearly defined. The temporal relationships and the
transitions between the goals can be further identified. As a
result, a Goal-Net model can be constructed that serves as
the brain of an agent or an autonomous system, which
enables the agent or system to select the next goal to achieve
selected goal, as well as to select the next action to pursue
the selected goal in a dynamic environment.

The research of Goal-Net theory is still ongoing. As a
modeling method, it‟s a novel way to present the overview of
system goals. Its goal selection and action selection
mechanism also can provide flexibility to the path selection
and optimization.

III. METHOD

During our preliminary research, the Goal-Net theory can
be used to model the hierarchical goals in the agile software
development process. We modeled the typical Agile United
Process (AUP) or Scrum process as a Goal-Net diagram
shown in Fig. 4, serves as the overview guide for students.

From Fig. 4, we can see that the top goal for one iteration
is modeled as a top composite state named „Software
iteration finished‟. To achieve the goal, we need to reach
four sub-goals that are also composite states named
„Requirements Obtained‟, „Design Finished‟,
„Implementation Finished‟, and „Test Finished‟ sequentially.
To achieve them, four lead transitions are required.

 Inception: the input transition for state of
Requirements Obtained, which includes two atomic
states: User stories obtained and Tasks obtained, and
their three related transitions (tasks and conditions)
shown in the figure. For Scrum, this transition can be
executed in sprint planning activity.

 Elaboration: the input transition for state of Design
Finished and output transition for state of
Requirements Obtained, which includes three
concurrent atomic states, their corresponding input
transitions and one synchronized atomic state shown
in the figure. For Scrum, this transition can be
executed in daily scrum activity.

 Construction: the input transition for state of
Implementation Finished and output transition for
state of Design Finished, which includes three
atomic states (Data structure obtained and Code
obtained are concurrent, Code obtained and Unit test
finished are sequential) and three corresponding
input transitions. They are synchronized at a finished
atomic state shown in the figure. For Scrum, this
transition also can be executed in daily scrum
activity.

 Transition: the input transition for state of Test
Finished and output transition for state of
Implementation Finished, which includes three

39

atomic states (Debug version obtained, Integration
test version obtained and Working software obtained)
and four corresponding input/output transitions. For
Scrum, this transition also can be executed in daily
scrum activity.

After these four goals are achieved, the AUP team can do
some finishing work or Sprint retrospective activity for
Scrum team to end this iteration.

There are two special atomic states shown at the bottom
of figure 4, Bugs obtained and Test cases obtained, can cut
across their parent composite states. In agile process, team
member or tester can depict bugs or test cases anytime after
user stories are obtained. Those bugs and test cases will be

Inception/Sprint

Planning

Finish/Sprint

retrospective

User stories

 obtained

Requirements Obtained Design Finished Implementation Finished Test Finished

Depicting user

stories

Tasks

 obtained

Splitting to

tasks

Finishing

Architure

 obtained

Designing

architure

UI

 obtained

Designing

UI

Finishing

Elaboration/

Daily Scrum

Data

 obtained

Designing

data

Construction/

Daily Scrum

Data structure

 obtained

Implementing

data

Code

 obtained

Coding

Finishing

Working Soft.

 obtained

Acceptance

testing

Integration test

version obtained

Integration

testing

Finishing

Unit test

finished

Unit

testing

Debugging

Debug version

obtained

Bugs

 obtained

Depicting

bugs

Test cases

 obtained

Depicting

test cases

Transition/

Daily Scrum

Software iteration finished

Figure 4. A tailored AUP/Scrum Goal-Net model for our course

processed in transitions of Debugging and Acceptance
testing respectively, which bring agility to the process.

IV. PRACTICES & CASE STUDY

As we mentioned before, the first MSE class on direction
of Mobile & Cloud Computing has 94 full-time students who
were trained by a tailored RUP during 2011 spring semester
in College of Software (COS), Beihang University. They
were spontaneously organized into 19 teams. The numbers of
member in one team are strictly limited to 3-7 persons. Team
members will take different roles in one team, such as
leader/manager, analyst, designer, programmer, tester etc.
The team leader should organize project meeting/activities
regularly. Team can decide their project content by
themselves, or they can pick up one of recommended
projects from teachers. The reading material is the Rational
Unified Process (version 2000). In 2012 spring semester, for
the second class (231 full-time students) and third class (176
part-time students), the course requirements, team rules,
execution mode, and evaluative criteria etc. were totally

same with 2011 class. The difference is just some agile
elements and features were introduced into the process as
follows.

A. The Roles in AUP Process

Generally in an agile team, there are several roles, which
have different names depending on the method listed above.
Roles are not positions, any given person takes on one or
more roles and can switch roles over time, and any given role
may have zero or more people in it at any given point in a
project.

Fig. 5 shows the overview structure of an agile team. The
core agile team includes the team of developers who lead by
the team lead, working closely with a product owner to build
high-quality working software during the iterative and
incremental process. Sometimes an architecture owner is
also involved. The supporting casts including technical
experts, domain experts and independent testers etc.

40

Team lead
Product owner

Agile Team

Produces

Working software

Supporting Cast

Team members

Technical experts

Domain experts

Independent testers

Stakeholders

End user
Architecture owner

External

system team

Senior

management

Architects

Operations

staff

Support staff

Auditors

Gold owner
Domain

experts

represents

Supports

Figure 5. Organization structure of a typical agile team

From the organization structure, we can see the common
agile roles include:

1) Core roles in agile team

 Team lead – the person whose role is responsible for
facilitating the team, obtaining resources for it, and
protecting it from problems. This role encompasses
the soft skills of project management but not the
technical ones such as planning and scheduling,
activities which are better left to the team as a whole.

 Team member – the peoples, sometimes referred to
as designer, tester, developer or programmer, whose
role is responsible for the creation and delivery of a
system. This includes designing, modeling,
programming, testing, and release activities, and so
on.

 Product owner – the product owner, called on-site
customer in XP and active stakeholder in AM,
represents the stakeholders. This is the one person
whose role is responsible for a team (or sub-team for
large projects). He/she is also responsible for the
prioritized work item list (called a product backlog
in Scrum), for making decisions in a timely manner,
and for providing information in a timely manner.

2) Additional roles at scale

 Architecture owner – the person whose role is
responsible for facilitating architectural decisions on
a sub-team and is part of the architecture owner team
which is responsible for overall architectural
direction of the project.

 Stakeholder – a stakeholder is anyone who is a direct
user, indirect user, manager of users, senior manager,
operations staff member, the gold owner who funds
the project, support IT staff member, auditors,
program manager, developers working on other
systems that integrate or interact with the one under
development, or maintenance professionals
potentially affected by the development and/or
deployment of a software project.

3) Supporting roles at scale

 Technical experts – sometimes the agile team needs
the help of technical experts, such as build masters to
set up their build scripts or a DBA to help design and
test their database. Technical experts are brought in
on an as-needed, temporary basis, to help the team

overcome a difficult problem and to transfer their
skills to one or more developers on the team.

 Domain experts – as we can see in Fig. 5, the
product owner represents a wide range of
stakeholders, not just end users, and in practice it
isn't reasonable to expect them to be experts at every
specific domain. As a result the product owner will
sometimes bring in domain experts to work with the
team.

 Independent tester – effective agile teams sometimes
need an independent test team working in parallel
that validates their work throughout the lifecycle.
This is an optional role, typically adopted only on
very complex or big projects.

We require that the core roles must be involved in our
student team and others are optional.

B. Requirement Management in AUP Process

Instead of other requirement analysis activities in most
plan-driven process, agile team uses user stories to capture
customer‟s goals, which are short, simple description of a
feature told from the perspective of the person who desires
the new capability, usually a user or customer of the system.
User stories typically follow a simple template:

As a <type of user>, I want to <some goal> so that

<some reason>.

User stories are often written on index cards or sticky

notes, stored in a shoe box, and arranged on walls or tables to
facilitate planning and discussion. Therefore, the team can
strongly shift the focus from writing features to talking about
them. In fact, these discussions are more important than
whatever the text is written.

Product Owners are primarily responsible for user stories.
But anyone else also can contribute to them. In actual
environment many users write user stories. The first
requirement may come from end user. The product owner,
tech architect, scrum master, business analyst etc., anyone
can update them but ultimately it is the product owner who is
responsible for the backlog.

User stories should be written in a non-technical manner
from the perspective of an end user. This user story will be
further sliced. After fine tuning the stories to an extent this
should be put to review to the agile team. The entire agile
team should work on these stories to understand it perfectly.
Any technical constraints or limitations should be noted
down and presented to customer. Then finally those user
stories will be stored in the product backlog and be divided
into small piece of tasks to workers to implement. The
product backlog is a prioritized list of functionalities that will
be developed to the software product or service.

One of the benefits for agile user stories is that they can
be written at varying levels of detail. We can write user
stories that cover large amounts of functionality. These large
user stories are generally known as epics. Here is an example
epic from an online B2C marketplace product or services:

41

As a customer, I want to pay on mobile so that I can buy
goods on mobile quickly.

As an epic is generally too large for an agile team to
complete in one iteration, it needs to be split into multiple
smaller user stories before it is worked on. The epic above
might be split into dozens or more, including the following
two:

As a VIP customer, I want to quickly pay by delivery so
that I can buy goods on mobile quickly without paying
immediately.

As a common customer, I want to quickly pay by credit
card so that I can buy goods on mobile quickly.

Table I shows an example of user stories list in one of
student project.

TABLE I. AN EXAMPLE OF USER STORIES LIST

ID As a/an I want to… so that…

1 visitor search goods online I can find my favorite

goods

1.1 visitor search goods online

by keyword

I can find my favorite

goods according to

typing a part of
keyword

1.2 visitor search goods online

by category

I can find my favorite

goods according to its
category

2 visitor sort the result after

searching

I can find my favorite

goods according to
sorting result

2.1 visitor sort the result by

price

I can find my favorite

goods according to

price

2.2 visitor sort the result by

location

I can find my favorite

goods according to

location

2 customer pay online I can buy goods
online

2.1 VIP

customer

pay by delivery I can buy goods

online without paying
immediately

2.2 common

customer

pay by credit card I can buy goods

online

… … … …

The split user stories then will be stored into backlog.

There are four types of backlog in agile process (e.g. scrum)
as follows:

 Backlog: a list of user stories, bugs and features that
need to be handled.

 Product Backlog: a list of customer requirements for
entire product.

 Release Backlog: a list of user stories, features and
bugs that should be implemented in defined release.

 Iteration Backlog (Sprint Backlog): A list of user
stories, features and bugs that should be
implemented in defined iteration (e.g. one sprint in
scrum).

C. Case Study and Analysis

1) Result Comparison

We did not require too much agile theories and methods

for those student teams, but only encouraged them to equip
above roles and requirement management methods into their
development process. Table II shows the result summary
comparisons between 2011 class and 2012 classes.

TABLE II. RESULT COMPARISONS BETWEEN 2011 AND 2012 LASSES

Graduate Students for MSE program
2011

Full-T

2012

Full-T

2012

Part-T

Number of teams 19 47 32

Project duration
3

months

2.5

months

1.6

months

Average team size 4.95 4.91 5.5

Average number of iteration meeting 4.89 3.06 2.69

Average number of artifact (Inception) 2 2.47 2.13

Average number of artifact
(Elaboration)

1.84 2.06 2.41

Average number of artifact

(Construction)
2.21 2.68 2

Average number of artifact (Transition) 1.53 1.32 1.53

Average quality of artifact (Inception)
(5)

3.95 4.23 4.38

Average quality of artifact (Elaboration)

(5)
4.11 4.13 4.28

Average quality of artifact
(Construction) (5)

4.32 4.64 4.78

Average quality of artifact (Transition)

(5)
4.21 3.74 3.53

Average final score of project (100) 83.05 85.4 88.25

From Table II, we can see the project durations for three
classes are different. 2011 full-time class had 3 months to
execute their projects; 2012 full-time class had 2.5 months;
and 2012 part-time class had shortest time that is only 1.6
months. We hoped that infusing the agile thoughts can help
them to speed up the project progress.

For comparing all aspects at a same baseline condition,
we will take the project duration as the base for each class,
and then other results will be divided by them.

2) Analysis and Lessons Learned

 Fig. 6 shows that as 2012 classes had shorter project
development time, their average team size was
bigger than 2011 class for increasing team man
power when they spontaneously organized into
teams, especially for 2012 part-time class. The
average times of iteration (per month) for 2012 full-
time class are less than 2011 full-time class for the
time reason. However 2012 part-time class has more
iteration times than others, as most of students in the
class is working in software companies and has
software development experiences.

42

Figure 6. Comparison of team size and iteration times (per month)

 Fig. 7 shows that after unifying the comparison base
to one month, the work productivity of 2012 classes
are higher than 2011 class in all four AUP phases.
Because of the rich work experiences for 2012 part-
time students, they had highest productivity.

Figure 7. Productivity comparisons for different phase (per month)

 Fig. 8 shows the same result for the artifact quality
in different AUP phases. The 2012 part-time class
also had the highest quality.

Figure 8. Artifact quality comparison for different phase (per month)

 The similar result also can be seen in Fig. 9. The
2012 part-time class had highest final score.

Figure 9. Final score comparison (per month)

V. CONCLUSIONS

In this paper, we propose a novel goal-oriented method to
model AUP software development process based on Goal-
Net modeling theory, which can be used on modeling
complex process with phase goals and hierarchy goals.

The contributions in the paper include: 1) by modeling
AUP via Goal-Net method, we have provided a fresh look
and a new perspective to see AUP, 2) by analyzing and
studying an educational case, we have shared our
experiences of introducing Goal Oriented AUP (GOAUP)
into the software engineering education to professions. Our
educational practices of GOAUP for MSE students at
College of Software, Beihang University showed that the
work productivity and artifact quality can be improved by
infusing GOAUP into their course and software development
process.

Currently the GOAUP model just reflects overview of
AUP from a Goal-Net view. With more detailed, hierarchy
goals are discovered during software development process,
how to monitor, manage and improve the agile process from
the goal-oriented perspective can be a new research direction
for future work.

REFERENCES

[1] S. Freudenberg, and H. Sharp, “Currents Trends, People, Projects The
Top 10 Burning Research Questions from Practitioners,” Ieee
Software, vol. 27, no. 5, pp. 8-9, Sep-Oct, 2010.

[2] I. T. Christou, S. T. Ponis, and E. Palaiologou, “Using the Agile
Unified Process in Banking,” Ieee Software, vol. 27, no. 3, pp. 72-79,
May-Jun, 2010.

[3] J. Smith, “An introduction to the rational unified process,”
International Conference on Software Methods and Tools, Proceeding,
pp. 263-263, 2000.

[4] I. Jacobson, G. Booch, and J. Rumbaugh, “The unified process
(Reprinted from The Unified Software Development Process),” Ieee
Software, vol. 16, no. 3, pp. 96-+, May-Jun, 1999.

[5] C. Larman, and V. R. Basili, “Iterative and incremental development:
A brief history,” Computer, vol. 36, no. 6, pp. 47-+, Jun, 2003.

[6] T. Dingsøyr, S. Nerur, V. Balijepally et al., “A decade of agile
methodologies: Towards explaining agile software development,”
Journal of Systems and Software, vol. 85, no. 6, pp. 1213-1221, 2012.

[7] P. Abrahamsson, O. Salo, J. Ronkainen et al., Agile software
development methods: review and analysis, 2002.

[8] D. Cohen, M. Lindvall, and P. Costa, “An introduction to agile
methods,” Advances in Computers, vol. 62, pp. 1-66, 2004.

43

[9] J. Erickson, K. Lyytinen, and K. Siau, “Agile modeling, agile
software development, and extreme programming: The state of
research,” Journal of Database Management, vol. 16, no. 4, pp. 88-
100, Oct-Dec, 2005.

[10] T. Dyba, and T. Dingsoyr, “Empirical studies of agile software
development: A systematic review,” Information and Software
Technology, vol. 50, no. 9-10, pp. 833-859, Aug, 2008.

[11] T. Dingsoyr, T. Dyba, and N. B. Moe, “Agile Software Development:
An Introduction and Overview,” Agile Software Development:
Current Research and Future Directions, pp. 1-13, 2010.

[12] C. Larman, and V. R. Basili, “Iterative and incremental developments.
a brief history,” Computer, vol. 36, no. 6, pp. 47 - 56, 2003.

[13] P. Abrahamsson, and J. Koskela, “Extreme programming: A survey
of empirical data from a controlled case study,” in 2004 International
Symposium on Empirical Software Engineering, Proceedings, 2004,
pp. 73-82.

[14] O. Salo, and P. Abrahamsson, “Agile methods in European embedded
software development organisations: a survey on the actual use and
usefulness of Extreme Programming and Scrum,” Iet Software, vol. 2,
no. 1, pp. 58-64, Feb, 2008.

[15] A. Cockburn, Crystal Clear, A Human-Powered Methodology for
Small Teams, 2004.

[16] H. Che, “Review of "Agile Modeling: Effective Practice for eXtreme
Programming and the Unified Process by Scott W. Ambler", John
Wiley & Sons, Inc, 2002, 0-471-20282-7,” Newsletter, ACM
SIGSOFT Software Engineering Notes vol. 30, no. 4, pp. 83, 2005.

[17] A. Howard, “A new RAD-based approach to commercial information
systems development: the dynamic system development method,”
Industrial Management & Data Systems, vol. 97, no. 5-6, pp. 175-&,
1997.

[18] I. Jacobson, P. W. Ng, and I. Spence, “The essential unified process -
A fresh start for process,” Dr Dobbs Journal, vol. 31, no. 9, pp. 40-+,
Sep, 2006.

[19] A. F. Chowdhury, and M. N. Huda, “Comparison between Adaptive
Software Development and Feature Driven Development,” 2011
International Conference on Computer Science and Network
Technology (Iccsnt), Vols 1-4, pp. 363-367, 2012.

[20] M. Perona, and C. Benucci, “The Integrated Kanban System: A new
software tool for kanban production,” It and Manufacturing
Partnerships, vol. 7, pp. 75-92, 1996.

[21] M. Poppendieck, “Lean software development,” in 29th International
Conference on Software Engineering: ICSE 2007 Companion
Volume, Proceedings, 2007, pp. 165-166.

[22] A. Borg, M. Patel, and K. Sandahl, “Integrating an improvement
model of handling capacity requirements with the OpenUP/Basic
process,” Requirements Engineering: Foundation for Software
Quality, vol. 4542, pp. 341-354, 2007.

[23] G. B. Alleman, M. Henderson, and R. Seggelke, “Making agile
development work in a government contracting environment -
Measuring velocity with earned value,” Proceedings of the Agile
Development Conference, pp. 114-119, 2003.

[24] Zhiqi Shen, Chunyan Miao, Xuehong Tao et al., “Goal oriented
modeling for intelligent software agents,” in Ieee/Wic/Acm
International Conference on Intelligent Agent Technology,
Proceedings, 2004, pp. 540-543.

[25] Zhiqi Shen, “Goal-oriented Modeling for Intelligent Agents and their
Applications,” Nanyang Technological University, Singapore, 2005.

[26] Zhiqi Shen, D. T. Li, Chunyan Miao et al., “Goal-oriented
methodology for agent system development,” in 2005
IEEE/WIC/ACM International Conference on Intelligent Agent
Technology, Proceedings, 2005, pp. 95-101.

[27] Han Yu, Zhiqi Shen, and Chunyan Miao, “Intelligent Software Agent
Design Tool Using Goal Net Methodology,” in IAT '07.
IEEE/WIC/ACM International Conference on Intelligent Agent
Technology, 2007., 2007, pp. 43-46.

[28] Huiliang Zhang, Zhiqi Shen, and Chunyan Miao, “Enabling Goal
Oriented Action Planning with Goal Net,” in 2009 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent
Technology - Workshops, 2009, pp. 271-274.

[29] Huiliang Zhang, Zhiqi Shen, Chunyan Miao et al., “Motivated
Learning for Goal Selection in Goal Nets,” in 2010 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent
Technology, 2010, pp. 252-255.

44

