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Abstract

We use isomorphism ¢ between matrix algebras and simple orthogonal Clifford alge-
bras C/(Q) to compute matrix exponential e? of a real, complex, and quaternionic
matrix A. The isomorphic image p = ¢(4) in C¢(Q), where the quadratic form @
has a suitable signature (p,q), is exponentiated modulo a minimal polynomial of p
using Clifford exponential. Elements of C/(Q) are treated as symbolic multivariate
polynomials in Grassmann monomials. Computations in C¢(Q) are performed with a
Maple package ‘CLIFFORD’. Three examples of matrix exponentiation are given.

1 Introduction

Exponentiation of a numeric n x n matrix A is needed when solving a system of differential
equations x' = Ax, x(0) = xg, in order to represent its solution in a form e4*xq. It is well
known that the exponential form of the solution remains valid when A is not diagonalizable,
provided the following definition of e? is adopted:

i E R where A% =1. (1)
k=0

n

Equation (1) means that the sequence of partial sums S, = ZAk Jk! — e entrywise.

k=0
Equivalently, (1) implies that [|S,, —e?||; — 0 where ||A|; denotes matrix 1-norm defined
as the maximum of {||4;|l1, 7 = 1,...,n}, A; is the jth column of a A, and [|4;l; is
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n
the 1-vector norm on C" defined as ||x|1 = Z |z;|. However, for several reasons, there
i=1
is no obvious way! to implement definition (1) on a computer, unless of course A is
diagonalizable, that is, when A has a complete set of linearly independent eigenvectors
(cf. [2)).

Another approach to solving x’ = Ax is to find Jordan canonical form J of the matrix
A. Let P be a nonsingular matrix such that P~'AP = J. Then, if a change of basis is
made such that x = Py, the matrix equation x’ = Ax is transformed into y’ = Jy and, at
least theoretically, its solution is represented as e’*c for some constant vector c. However,
since the Jordan form is extremely discontinuous on a set of all n X n matrices, numeric
computations of J are seriously ill-posed (cf. [2, 3]).

In this paper we present another approach to exponentiate a matrix, let it be numeric
or symbolic, with real, complex, or quaternionic entries, totally different from the linear
algebra methods. It relies on the well-known isomorphism between matrix algebras over
R, C, or H, and simple orthogonal Clifford algebras (cf. [4, 5, 6, 7]). This is not a matrix
method in the sense that elements of the real Clifford algebra C¢(Q) are not viewed here as
matrices but instead they are treated as symbolic multivariate polynomials in some basis
Grassmann monomials. This is possible due to the linear isomorphism C¢(V,Q) ~ AV.
The critical exponentiation is done in the real Clifford algebra C¥), ; over () with a suitable
signature (p, q) depending whether the given matrix A has real, complex, or quaternionic
entries. Three examples of computation of the matrix exponential with a Maple package
‘CLIFFORD’ (cf. [8, 9, 10]) are presented below. The Reader is encouraged to repeat
these computations.

In order to find matrix exponential e, the following steps will be taken:

— We will view elements of Cf,, as real multivariate polynomials in basis Grassmann
or Clifford monomials.

— We will find explicit spinor (left-regular) representation « of C¢, , in a minimal left
ideal S = C¥, ,f generated by a primitive idempotent f.

— For a matrix A (numeric or symbolic) in the matrix ring R(n), C(n) or H(n) where
n=2""1m= [%(p +¢)] , we will find its isomorphic image p = p(A) in Cl) 4.2

— We will find a real minimal polynomial p(z) of p and then a formal power series
exp(p) mod p(x) in Clp 4.

— We will check the truncation error of the power series exp(p) in C¥,, ; via a polynomial
norm, or in a matrix norm, both built into Maple.?

— We will map exp(p) back to the matrix ring R(n), C(n) or H(n) to get exp(A).

Before we proceed, let’s recall certain useful facts about orthogonal Clifford algebras
Clyp, 4. For more information see [4].

Tt is possible to compute the exponential e* with a help of the Laplace transform method applied to
an appropriate system of differential equations [1].
2The brackets [-] denote the floor function

31t is also possible to use the R topology where n’ =2", n=p+q.
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~If p—q # 1mod4 then C/,, is a simple algebra of dimension 2", n = p + g,
isomorphic with a full matrix algebra with entries in R, C, or H.

— If p— ¢ = 1 mod 4 then C/,, is a semi-simple algebra of dimension 2", n = p + g,
containing two copies of a full matrix algebra with entries in R or H projected out
by two central idempotents %(1 + ejeq-- -en).4

— Cl, 4 has a faithful representation as a matrix algebra with entries in R, C, H or
R ® R, H® H depending whether C¥,, , is simple or semisimple.

— Any primitive idempotent f in C¥, , is expressible as a product

1 1 1
f:5(1ieT1)§(1ieT2>"'§(1ieTk) (2)
where {er,,ern,,...,en. }, Kk =q—rq—p, is a set of commuting basis monomials with
square 1, and r; is the Radon-Hurwitz number defined by the recursion r;1g = r; +4

and

ilo 1 2 3 4 5 6 7
0

T‘i‘

— Cfp, has a complete set of 2% primitive idempotents each with k factors as in (2).

— The division ring K = fC¥, ,f is isomorphic to R or C or H when (p — ¢) mod 8 is
0,1,2, or 3,7 or 4,5,6.

— The mapping S x K — S, or (¢, \) — 1\ defines a right K-linear structure on the
spinor space S = Cl,, o f (cf. [7]).

Example 1. In Cl3; ~ R(4) we have k = 2 and f = (14 e1)3(1 + e34), €34 = ezey =
e3 A\ e4 is a primitive idempotent. The ring K ~ R is just spanned by {1}r and a real
basis for S = Cl3 1 f may be generated by {1, ez, e3,ea3}r (here ex3 = eze3 = ez Aes.)
Example 2. In Cl3 ~ C(2) we have k = 1 and f = (1 +e;) is a primitive idempotent.
The ring K ~ C may be spanned by {1, ess}r and a basis for S = Cl3f over K may be
generated by {1, e2}k.

Example 3. In C/; 3 ~ H(2), the Clifford polynomial f = %(1+e14), ey = ejey = ejA\ey,
is a primitive idempotent. Thus, the ring K ~ H may be spanned by {1, ez, e3, e23}r and
a basis for S = Cl; 3f as a right-quaternionic space over K may be generated by {1, e; }xk.

2 Exponential of a real matrix

We now proceed to exponentiate a real 4 x 4 matrix using the spinor representation v of
Cl3 1 from Example 1. Instead of Cl3; one could also use C/s 2, the Clifford algebra of
the neutral signature (2,2), since Clp 2 ~ R(4). From now on e;; = e;e; = e; A ej, i # j,
K = {Id}r ~ R, and Id denotes the unit element of C¢3; in ‘CLIFFORD’

Recall the following facts about the simple algebra Cl3 1 ~ R(4) and its spinor space S:

4For the purpose of this paper, it is enough to consider simple Clifford algebras only.
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— Cl31 ={1,e;, e, €ji; €ijritr, 1 <j<k<l ijkl=1...4

- S=061f={fi=F fa=exf, fs=esf, fa=eunflx

— Each basis monomial e;jr; has a unique matrix e, representation in the spinor

basis f;, ¢ = 1,...,4. For example, the basis 1-vectors e, es, €3, e4 are represented
under v as:
1 0 0 O 01 00
10 =1 0 O |1 0 00
1= 1o 0o —1 0| 7="]oo0 o0 1
0 O 0 1 0 010
(3)
0 0 1 0 0 0 -1 0
10 0 0 -1 10 0 0 1
V=11 0 0 0T 1 0 0 o0
0 -1 0 0 0 -1 0 0

Since v : R(4) — Cl3; is a linear isomorphism of algebras, matrices representing Clifford
monomials of higher ranks are matrix products of matrices shown in (3). For example,

’yeijkl = ’Yeﬁej ’Yek’Yel5

0O 1 0 O
-1 0 0 O

Yeiz2za = Ye1VexVYesVes, = 0o 0 0 1 (4)
0O 0 -1 0

Then, a matrix representing any Clifford polynomial may be found by the linearity of ~.
Relevant information about Cl3; is stored in ‘CLIFFORD’ and can be retrieved as
follows:

> restart:with(Cliff3):dim:=4:B:=1linalg[diag] (1,1,1,-1):
> eval (makealiases(dim)) :data:=clidata();
data :=
. 1 1 1 1
[real, 4, simple, cmulQ(§ Id+ 3 el, 3 Id+ 3 e34),
[Id, €2, e3, €23],[Id], [Id, €2, e3, €23]]

In the Maple list data above,

— real, 4, and simple mean that Cls; is a simple algebra isomorphic to R(4).

— The fourth element data[4] in the list data’ is a primitive idempotent f written
as a Clifford product of two Clifford polynomials (Clifford product in orthogonal
Clifford algebras is realized in ‘CLIFFORD’ through a procedure ’cmulQ’).

— The list [Id, e2, e3, e23] contains generators of the spinor space S = Cl3 1 f over the
reals R (compare with Example 1 above).
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— The list [Id] contains the only basis element of the field K C Cf3;, that is, the
identity element of C/3 .

— The final list [Id, €2, 3, 23] contains generators of the spinor space S = Cls; f
over the field K. In this case it coincides with data[5] since K ~ R.

Thus, a real spinor basis in S consists of the following four polynomials:
> fl:=f;f2:=cmulQ(e2,f);£f3:=cmulQ(e3,f);f4:= cmulQ(e23,f);
1

1 1
li=—Id+ - e34
f 1 +463 +4

1 1 1 1 1
el + 1 el34, f2.—Z e2 + 1 €234 — 1 el2 — 1 el234 5
1 1 1 1 1 1 1 1
fS:ZZ e3 + 1 ed — 1 el3 — 1 eld, f4::1 €23 + 1 €24 + 1 el23 + 1 el24

Procedure ’matKrepr’ allows us now to compute 16 matrices ml[i] representing each
basis monomial in C¥3 ;.

> for i from 1 to 16 do
> lprint (‘The basis element‘,clibas[i],
‘is represented by the following matrix:);
> m[i] :=subs(Id=1,matKrepr(clibas[i])) od:
Let’s define a 4 x 4 real matrix A without a complete set of eigenvectors. Therefore, A
cannot be diagonalized.

> A:=linalg[matrix] (4,4, [0,1,0,0,-1,2,0,0,-1,1,1,0,-1,1,0,11);
> linalgleigenvects] (A) ;#A has incomplete set of eigenvectors

01 0 0
-1 2 0 0
A=
-1 1 1 0
i -1 1 0 1 ]
1, 4, {[0, 0, 1, 0], [1, 1, 0, 0], [0, 0, 0, 1]}] (6)

Maple output in (6) shows that A has only one eigenvalue A = 1 with an algebraic
multiplicity 4 and a geometric multiplicity 3.

In the Appendix, one can find a procedure ’phi’ which gives the isomorphism ¢ from
R(4) to Cl3;. It can find the image p = phi(A) of any real 4 x 4 matrix A using the
previously computed matrices m[i]. In particular, the image p of A under ¢ is computed
as follows:

> FBgens:=[Id]; #assigning a basis element of K
> p:=phi(A,m,FBgens); #finding the image of A in C1(3,1)
1 1 1 1 1 1 1 1

Let’s go back to the exponentiation problem. So far we have found a Clifford polynomial
p in Cf¢3 1 which is the isomorphic image of A. We will now compute a sequence of finite



Matrix Exponential via Clifford Algebras 299

power series expansions of p up to a specified order N. Procedure ’sexp’ (defined in
the Appendix) finds these expansions, which are just Clifford polynomials, modulo the
minimal polynomial p(z) of p. The minimal polynomial p(z) can be computed using a
procedure ’climinpoly’.

> p(x)=climinpoly(p);
plz)=2>-2z+1 (8)

It can be easily verified that the polynomial (8) is satisfied by p = ¢(A) and that it is
also the minimal polynomial of A.

> cmul (p,p)-2%p+Id; #p satisfies its own minimal polynomial

> linalg[minpoly] (A,x); #matrix A has the same minimal polynomial as p
22 —2x+1

A finite sequence of say 20 Clifford polynomials approximating exp(p) can now be com-
puted.

> N:=20:for i from 1 to N do p.i:=sexp(p,i) od:# we want 20 polynomials

For example, Maple displays polynomial pyy as follows:

> p_lim:=p.20;

o Jim - 0013313319245080001 8666416490601 | 8266416490601
2432902008176640000 60822550204416 *~  60822550204416
82666416490601 82666416490601 82666416490601
 G0822550204416 T 60822550204416 © -2 60822550204416 ©
82666416490601 82666416490601 82666416490601
 60822550204416 “2* ~ 60822550204416 <> T Gosazp50200416 <2
Having computed the approximation polynomials p1,po,...,pn, N = 20, one can show

that the sequence converges to some limiting polynomial py;,, by verifying that |p; —p;| < e
for i,j > M, M sufficiently large, in one of the Maple’s built-in polynomial norms.

Finally, we map back py, into a 4 x 4 matrix which approximates exp(A) up to and
including the terms of order N.

> expA:=0:for i from 1 to nops(clibas) do
> expA:=evalm(expA+coeff(p_lim, clibas[i])*m[i])od:
> evalm(expA); #the matrix exponent of A
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[ 1 82666416490601 0 0 T
2432902008176640000 30411275102208

—82666416490601 7775794614048301 0 0
30411275102208 1430277488640000
—82666416490601 82666416490601 6613313319248080001 0
30411275102208 30411275102208 2432902008176640000
—82666416490601 82666416490601 0 6613313319248080001

L 30411275102208 30411275102208 2432902008176640000

Although A had an incomplete set of eigenvectors, Maple can find exp(A) in a closed
form.

> mA:=linalg[exponential] (A);

0 e 00

—e 2e 0 O
mA :

—e e e 0

—e e 0 e

Notice that our result is very close to the Maple closed-form result:

> map(evalf,evalm(expA));

[.41103176233121648585 10718 | 2.7182818284590452349 , 0, 0]
[—2.7182818284590452349 , 5.4365636569180904703, 0, 0]
[—2.7182818284590452349 , 2.7182818284590452349 , 2.7182818284590452353 , 0]
[—2.7182818284590452349 , 2.7182818284590452349, 0, 2.7182818284590452353]

The 1-norm of the difference matrix between mA and expA can be computed in Maple as
follows:

> evalf (linalg[norm] (mA-expA,1));

210717

3 Exponential of a complex matrix

In this section we exponentiate a complex 2 X 2 matrix using a spinor representation of

Cl3) ~ C(2) (see Example 2 above). Note that instead of using Cl3 o, one could also use

Cly 5 since Cly o ~ C(2). As before, e;, = ejeje, = e; NejNey, 4,5,k =1,...,3, K=

{Id, ex3}r ~ C, e%3 = —Id, where Id denotes the unit element of C/3( in ‘CLIFFORD’.
Recall these facts about the simple algebra Cl3 and its spinor space S:

— COlsp={1, e, ejj, jptr, 1 <j<k.

- S=06of ={fi=1 fa=exf, fs=esf, fa=exuflr
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- S=Clzof ={fi=f fo=exf}x

For example, the basis 1-vectors are represented in the spinor basis { fi, fo} by these three
matrices in K(2) well known as the Pauli matrices:

o 1 0 o 0 1 o 0 —€93
'781_<0 _1>7 782_<1 0)7 '783_<e23 0 > (9)

The following information about Cf3 g is stored in ‘CLIFFORD:

> dim:=3:B:=linalg[diag] (1,1,1):
> data:=clidata();

1 1
data := [complex, 2, simple, 3 Id+ 5 el, [Id, e2, e3, €23], [Id, 23], [Id, e2]]

Now we define a Grassmann basis in C/3, assign a primitive idempotent to f, and
generate a spinor basis for S = Cl3 ¢ f.

> clibas:=cbasis(dim); #ordered basis in C1(3,0)

clibas := [Id, el, €2, e3, €12, el3, €23, €123]

> f:=data[4]; #a primitive idempotent in C1(3,0)

f= % Id+ % el
> sbasis:=minimalideal(clibas,f,’left’); #find a real basis in C1(B)f

sbasis :=

[[% Id+ % el, %eZ - %«912, % e3 — % el3, %«923 + % el23], [Id, €2, e3, 23], left]

> fbasis:=Kfield(sbasis,f); #find a basis for the field K

fbasis := [[1 Id+ 151, 1623 + 1 el23], [Id, e23]]

2 2 2 2

> SBgens:=sbasis[2] ;#generators for a real basis in S

SBgens = [Id, e2, €3, €23]
> FBgens:=fbasis[2]; #generators for K

FBgens := [Id, 23]
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In the above, ’sbasis’ is a K-basis returned for S = Cl3of. Since in the current
signature (3,0) we have K = {Id, e23}r ~ C, cmulQ(e23, e23) = —Id, and Cl3o ~ C(2),
the output from ’spinorKbasis’ shown below has two basis vectors and their generators
modulo f:

> Kbasis:=spinorKbasis(SBgens,f,FBgens,’left’);

) 1 1 1 1
Kbasis := [[5 Id+ 561, 562 — 5612], [Id, e2], left]

> cmulQ(f,f); #verifying that f is an idempotent
1 1
—Id+ —el
TR

Note that the second list in ’Kbasis’ contains generators of the first list modulo the
idempotent f. Thus, the spinor basis in .S over K consists of the following two polynomi-
als:

> for i from 1 to nops(Kbasis[1]) do f.i:=Kbasis[1][i] od;
1 1 1 1
1l:==Id+ -el 2:=—-e2——el2 1
f 5 d+ 5 el f 5 ¢ 5¢€ (10)

We are in a position now to compute matrices m|i] representing basis elements in C?3 5. We
will only display Clifford-algebra valued matrices representing the 1-vectors {e;, ez, es}
and the unit pseudoscalar ejs3 = ejeqes.

> for i from 1 to nops(clibas) do
> lprint (‘The basis element‘,clibas[i],

‘is represented by the following matrix:‘);
> m[i] :=subs(Id=1,matKrepr(clibas[i])) od:

The basis element el is represented by the following matrix:

The basis element e2 is represented by the following matrix:

The basis element e3  is represented by the following matrix:



Matrix Exponential via Clifford Algebras 303

0 —e23
e23 0

The basis element el23 is represented by the following matrix:

As an example, let’s define a complex 2x2 matrix A and let’s find its eigenvectors:

> A:=linalg[matrix] (2,2, [1+2*I,1-3*I,1-1,-2+I]); #defining A
> linalg[eigenvects] (A);

1+27 1-31
1-71 =217

1 1 3 1 1,1 1
[§+§\/—23—8L1,{[—Z+ZV—23—81+I+§I(§+§\/—23—81),1]}],

4

L1 3 1 11 1
[5_5‘/7_23_81,1,{[_1_ \/—23—8I+I+§I(§—5\/—23—81)71}}]

The image of A in Cl3 o under the isomorphism ¢ : C(2) — Cl3 can now be computed.
Recall that ’FBgens’ defined above contained the basis elements of the complex field K
in C£370.

> evalm(A) ;p:=phi(A,m,FBgens); #finding image of A in C1(3,0)

1+27 1-31
1-1 —21

1 1
p:z§Id+§€1+62+63+2613+2623

Thus, we have found a Clifford polynomial p in C¥3 o which is the isomorphic image of
A. We will now compute a sequence of finite power expansions of p up to and including
power N = 30 using the procedure ’sexp’. This sequence of Clifford polynomials should
converge to a polynomial py,, the image under ¢ of the matrix exponential exp(A). First,
we find the real minimal polynomial p(x) of p (called ’pol’ in Maple).

> pol:=climinpoly(p); #find the real minimal polynomial of p

pol =zt — 223 + 1322 — 122 + 40
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> &c(p$4) -2*&c (p$3) +13*&c (p$2) -12xp+40%1d; #checking that p satisfies pol

0

Observe that matrix A has the following complex minimal polynomial ’pol2’:

> pol2:=linalg[minpoly] (A,x);

pol2:=6+21 — x + 2°

> evalm(&* (A$2) -A+6+2%I);

Furthermore, since {Id,el23}r is another copy of the complex field K in Cl3, we can
easily verify that the Clifford polynomial p also satisfies the complex minimal polynomial
’pol2’ of A if we replace 1 with Id and I with €123, namely:

> &c(p$2) -p+6*Id+2xel123;

0

On the other hand, matrix A of course satisfies the polynomial *pol’:

> evalm(&* (A$4) -2%&* (A$3) +13*&* (A$2) -12%A+40) ;

As expected, the complex minimal polynomial of A is a factor of the real minimal poly-
nomial of p:

> divide(pol,pol2);

true

> pol3:=quo(pol,pol2,x);
pol3:=2° —x+6—21

Let’s check that pol3 % pol2 = pol:
> pol;expand(pol3 * pol2);
gt —22% + 1322 — 122 + 40
gt —22% + 1322 — 122 + 40
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The following loop computes Clifford polynomials p; approximating exp(p) in Cl3 .
We will only display polynomial psg and assign it to pym,-

> Digits:=20:
> N:=30:for i from 1 to N do p.i:=sexp(p,i) od;
> p_lim:=p.N:

739418826545208898275600203389 140606618686769098555631609225939

p30:=- 544108430383981658741145600000 + 176835239874794039090872320000000 *
13294860446171527820401106221093 5429376085448859186420447465893
© 88417619937397019545436160000000 et 12631088562485288506490830000000 ¢
50830755859220399836279191881837 15796535483801410769637551225479
44208809968698509772718080000000 + 22104404984349254886359040000000 c23
537129223345642211370021843709 24569201649575451209456052913
T 1184164552732995797483520000000 - 84691206836587183472640000000

By picking up numeric coefficients of the basis monomials in the subsequent approxima-
tions to exp(p), one can get an idea about the approximation errors.

sort ([op(L:=cliterms(p_lim))],bygrade):
for i from 1 to nops(L) do
L.i:=map(evalf, [seq(coeff(p.j,L[i]),j= 1..N)]1) od:
approxerror:=
max (seq(min(seq(abs(L.j[i]-L.j[i-1]), i=2..N)), j=1..nops(L)));

>
>
>
>

approxerror := .1 10719

Having computed the finite sequence of polynomials p; one can again show by using
Maple’s built-in polynomial norm functions that this is a convergent sequence. For exam-
ple, in the infinity norm one gets [p2g — p3o| < .6 x 1072 and |p; — pj| — 0 as i, — oo.

Thus, we have found an approximation py, to the power series expansion of exp(p)
in Cl39 up to and including terms of degree N = 30. Finally, we map back pj;y, into
a 2 x 2 complex matrix which approximates exp(A). We expand py;,,, over the matrices
mli]:
> expA:=0: for i from 1 to nops(clibas) do

> expA:=evalm(expA+coeff (p_lim,clibas[i] )*m[i]) od:
> evalm(expA); #the matrix exponent of A

 12631088562485288506490830000000 * 9286662584587853953761280000000
7789021393665659776614645092453  6228189267183180110479443301
T 17683523987479403909087232000000  3942814712927403324211200000 ]
12355386075985243242271013020079  340405770696784948489921131029
[88417619937397019545436160000000 ~ 472821496991427912007680000000 5
31743144776163499207933472943947  5959141766058476626587221301857
©14736269989566169924239360000000  5101016534849828050698240000000 623}

[ 7121749995744556670281318348249 596909308415457533523842428577
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Maple can find the exponent of A in a closed form with its ’linalg[exponential]’
command. We won’t display the result but we will just compare it numerically with our
result saved in ’expA’.
> mA:=linalg[exponential] (A):

Let’s replace the monomial e2we3 in ’expA’ with the imaginary unit I used by Maple
and let’s apply ’evalf’ to the entries of ’expA’:

> fexpA:=subs(e2we3=I,map(evalf,evalm(exph)));

fexpA =
[—.56382709696901085353 + .26103952215715461164 1 ,
—.44046771442052942162 — 1.5796302186766888057 I]
[.13973895796712599250 — .71994563035478140661 I ,
— 2.1540827359052753813 — 1.1682263182928324795 I

> fmA:=map(evalf,ml); #applying ’evalf’ to mA

fmA =
[—.56382709696901085362 + .26103952215715461158 I ,
—.44046771442052942180 — 1.5796302186766888058 I]
[.13973895796712599243 — .71994563035478140663 I ,
— 2.1540827359052753816 — 1.1682263182928324795 [

Let’s check the 1-norm of the difference matrix between ’fmA’ and >fexpA’:

> evalf(linalg[norm] (fmA-fexpA,1));
5059126028 10~ ®

The floating-point approximation >fexpA’ to exp(A) is within approximately .5 x 10718
in the matrix || - ||; norm to the closed matrix exponential computed by Maple.

4 Exponential of a quaternionic matrix

In order to exponentiate a quaternionic 2 x 2 matrix, we will use the spinor representation
of Cl13 ~ H(2) (see Example 3 above). Note that two other algebras could be used
instead of Cly 3, namely, Cly4 and Clyg since both are isomorphic to H(2). As before
ej =eej=e;Nej, i,j=1,...,4, but this time K = {Id, es, €3, e23}r ~ H.

Recall the following facts about the simple algebra C¢; 3 and its spinor space S:

~ Cliz={l,e;,e5, e, e mr, 1 <j<k<l
- S8= CEl,&f = {fl = f7 f2 = e2f7 f3 = e3f, f4 = eggf}R,
- S=Clhsf={fi=ffo=eflk
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For example, the basis 1-vectors e, e2, €3, e4 are represented by:

(0 1 _(es O (es 0O (0 —1 (11)
Yer = 1 0 » Yex = 0 —ey y Yez = 0 —e3 » Yeq = 1 0 :

In order to compute the spinor representation of C¢; 3, we proceed as follows:

> data:=clidata(linalg[diag] (1,-1,-1,-1));

1 1
data := [quaternionic, 2, simple, 3 Id+ 5 eld, [Id, el, €2, €3, €12, el3, €23, e123],
[Id, e2, e3, 23], [Id, el]]

We define a Grassmann basis in C/ 3, assign a primitive idempotent to f, and generate a
spinor basis for S = Cl; 3f.

> clibas:=cbasis(dim); #ordered basis in C1(1,3)
clibas =
[Id, el, e2, e3, ed, el2, el3, eld, €23, 24, e34, €123, €124, 134, €234, e1234]

> f:=data[4]; #a primitive idempotent in C1(1,3)

1 1
==—Id+ —el4d
f 5 +2e

Next, we compute a real basis in the spinor space S = Cf;3f using the command
‘minimalideal’:

> sbasis:=minimalideal(clibas,f,’left’) ;#find a real basis in C1(B)f

1 1 1 1 1 1 1 1 1 1
basis .= ||=Id+ —€el4, —el + —ed, —e2 — —¢el24, —e3 — —el34, —el2 — —e24
sbasis [[2 +2e ) 5¢€ +2e,2e 5 €124, Se3 —eldd, Se 5 €24,

1 1 1 1 1 1
—el3 — —e34, —e2 —el234, —el2 —e234
263 263,263+2€ 3,26 3—1—263],

[Id, el, e2, e3, el2, el3, €23, e123], left]

In the following, we compute a basis for the subalgebra K:
> fbasis:=Kfield(sbasis,f); #a basis for the field K
fbasis :=

1 1 1 1 1 1 1 1
[[5 Id+ 5 el4, 5 e2 — 3 el24, 5 e3 — 3 el34, 5 €23 + 3 el234], [Id, €2, e3, €23]]

> SBgens:=sbasis[2] ;#generators for a real basis in S

SBgens := [Id, el, e2, €3, el2, el3, €23, e123]
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Thus, a possible set of generators for K is:

> FBgens:=fbasis[2]; #generators for K
FBgens := [Id, e2, €3, 23] (12)

In the above, ’sbasis’ is a real basis for S = C/; 3f. Since in the current signature
(1,3) we have that K = {Id, €2, 3, €23}g ~ H and C/¢; 3 = H(2), the output from
’spinorKbasis’ shown below has two basis vectors and their generators modulo f for S
over K:

> Kbasis:=spinorKbasis(SBgens,f,FBgens,’left’);

1 1 1 1
Kbasis := [[5 Id+ 5614, 3 el + 5 ed], [Id, el], left]

> cmulQ(f,f); #f is an idempotent in C1(1,3)
1 1
—Id+ —el4d
TR

Notice that the generators of the first list in *Kbasis’ are listed in Kbasis[2]. Further-
more, a spinor basis in .S over K consists of the following two polynomials f; and f:

> for i from 1 to nops(Kbasis[1]) do f.i:=Kbasis[1][i] od;

1 1 1 1
1:==Id+ =el4 2:=—el+—-e4 13
fli=gld+geld,  f2:=gelt e (13)
Using the procedure ’matKrepr’ we can now find matrices m[i] with entries in K rep-
resenting basis monomials in C/; 3. Below we will display only matrices representing the
1-vectors e, e9, e3 and ey4:

> for i from 1 to nops(clibas) do
> lprint (‘The basis element‘,clibas[i],

‘is represented by the following matrix:‘);
> m[i] :=subs(Id=1,matKrepr(clibas[i])) od;

The basis element el is represented by the following matrix:

The basis element e2 is represented by the following matrix:
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The basis element e3 1is represented by the following matrix:

The basis element e4 is represented by the following matrix:

Let’s define a 2 x 2 quaternionic matrix A. In Maple, we will represent the standard
quaternionic basis {1,1,j,k} as {1,’1ii’,’jj’, kk’}. Later we will make substitutions:
’ii’ — e2,°jj° — e3,’kk’ — e2we3 since, as we may recall from Example 3 above,
K = {1, €9, e3, egg}R.
> A:=linalg[matrix] (2,2, [1+2%°ii’-3%’kk’,2+’ii’ -2%’jj’,
> ’kk’-3*’1ii’,2%’kk’-2%’jj’]); #defining a quaternionic matrix A

1+2ii —3kk 2+ii—27j

A= kk — 3ii 2kk — 2]

(14)

The isomorphism ¢ : H(2) — C¢; 3 has been defined in Maple through the procedure
’phi’ (see the Appendix). This way we can find image p in C¢; 3 of any matrix A. Recall
that *FBgens’ in (12) contains the basis elements of the field K.

> p:=phi(A,m,FBgens);#finding image of A in C1(1,3)

1 1 1
p::§Id+€1—|-62+e3—64—2612+613+5614—5623+€24+634+

1 1 5
3 el23 — el24 + el34 + 3 e234 — 3 el234

The minimal polynomial p(x) of p in C¢; 3 is then found with the procedure ’climinpoly’:

> climinpoly(p);
ot =223 +16 2% + 10z + 330

So far we have found a Clifford polynomial p in C?¢; 3 which is the isomorphic image
of the quaternionic matrix A. We will now compute a sequence of finite power expansions
of p using the procedure ’sexp’. This sequence of Clifford polynomials will be shown to
converge to a polynomial py;,,, that is the image of exp(A). For example, polynomial p20
= sexp(p,20) looks as follows:

> for i from 1 to 20 do p.i:=sexp(p,i) od;
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o0 - _ 08240889607160513 |\ 50515193107772493
10861169679360000 9503523469440000
976049744897473 76665127748453
638802334080000 2>~ 6669139276800 <24
93336382714907219 1736342897976643
152056375511040000 “ 124 ~ To7a758123520000 <134
9030311044661089 802551523836832291
1207929402830000 <24 T 152056375511040000
907882088300711 4304638284278411
~ 365520133440000 © > T 1472246338560000 >
360072975386539 19812017405738017
~ 116162242560000 <21 ~ 76028187755520000 <4
1889118161676113 . 277471312336316837
T 703964701440000 C 152056375511040000
98120514192871531 25277099300039

~ 152056375511040000 *°  44722463385600

Thus, we have a finite sequence of Clifford polynomials p; approximating exp(p). Next,
for each of the 16 basis monomials present in all polynomials, we create a sequence s; (or

sj in Maple) of its coefficients.

> for j from 1 to nops(clibas) do

> s.j:=map(evalf, [seq(coeff(p.i,clibas[j]),i=1..N)]) od:

For example, the sequence s1 of the coefficients of the identity element Id is:

> s81;

[1.500000000, —2., —6.916666667, —18.66666667, —20.22500000, —10.85972222,
—5.099206349, —3.980456349, —5.027722663, —6.129274691, —6.428549232,
—6.368049418, —6.301487892, —6.280796253, —6.280315663, —6.282290205,

—6.282986035, —6.283054064, —6.283026981, —6.283014787]

Having computed the finite sequence of polynomials p1, po, .. ., p2g, one can again verify
that this is a convergent sequence by using any of the Maple’s built-in polynomial norm
functions to estimate norms of the differences p; — p; for 4,5 = 1,...,20. It can be again

observed that [p; —p;| — 0 as 4, j — oco. Finally, we map back pyi,, =~ pao into a 2 x 2 matrix
>expA’ which approximates exp(A) up to and including terms of order N = 20. After
expressing back the basis elements {Id, €2, e3, e2we3} in terms of {1, ’ii’, *jj’, *kk’}

we obtain:

p-lim:=p20:

V V V V

serpA =

expA:=0:for i from 1 to nops(clibas) do
expA:=evalm(expA+coeff (p_limit,clibas[i])*m[i]) od:
sexpA:=subs ({e2we3="kk’,e3="jj’,e2="ii’}, evalm(exph));
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| 58880470322671 301630543173 177880447566499
8999548740000 152472320000 ' 7602818775552000 77
560815647244431793 10065855790684619  5520266650930879 .

76028187755520000  4751761734720000  2534272925184000
748687448521121 . 203548165276035707 ]

95995186560000 77 * 76028187755520000

30874478783885813 n 33523343384679259 n 3844312687422001 |
— 1

9503523469440000 4001483566080000 1357646209920000 7

2613788546323897 228937105237224287  127067464810704809 ..

6911653432320000 ~  38014093877760000 * 76028187755520000
38636486222845507 .. 414457945578965819 }

95342729251840000 77 ~ 76028187755520000

> fexpA:=map(evalf,evalm(sexpA)); #floating-point approximation

fexpA =
[—6.543602577 — 1.978264272 47 + .2339782783 jj + 7.376417403 kk ,
—2.118341860 — 2.178244733 ii 4 7.799218642 jj + 2.677272355 kk]
[—3.248740205 + 8.377728618 77 + 2.831601237 jj + .3781712396 kk ,
—6.022426997 + 1.671320448 i1 + 1.524559010 55 — 5.451372153 kk]

Thus, matrix ’sexpA’ is the exponential of the quaternionic matrix A from (14) computed
with the Clifford algebra C?; 3.

5 Conclusions

We have translated the problem of matrix exponentiation e, A € K(n), into the problem
of computing e? in the Clifford algebra C/¢(Q) isomorphic to K(n). This approach, alter-
native to the standard linear algebra methods, is based on the spinor representation of
Cl(Q). It should be equally applicable to other functions representable as power series.
Another use for the isomorphism between C¥, , and appropriate matrix rings could be to
finding the Jordan canonical form of A in terms of idempotent and nilpotent Clifford poly-
nomials from C¢(Q) (see also [11] and [12] for more on the Jordan form and its relation to
the Clifford algebra). Generally speaking, any linear algebra property of A can be related
to a corresponding property of p, its isomorphic image in C¢(Q), and it can be stated in
the purely symbolic non-matrix language of the Clifford algebra. These investigations are
greatly facilitated with ‘CLIFFORD’. At [9] interested Reader my find complete Maple
worksheets with the above and other computations.
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7 Appendix

The procedures described in this Appendix will work provided the Maple package ‘CLIF-
FORD’ has been loaded first into a worksheet.® Procedure ’phi’ was used above to
provide the isomorphism ¢ between the matrix algebras R(4), C(2), and H(2) and, respec-
tively, the Clifford algebras Cls3 1, Cl3 o, and C? 3.

> phi:=proc(A::matrix,m::table,FBgens::list(climon))
local N,n,cb,fb,AA,M,a,j,L,sys,vars,sol,p;global B;
if nops(FBgens)=1 then AA:=evalm(A) elif
nops (FBgens)=2 then fb:=op(remove(has,FBgens,Id));
AA:=subs(I=fb,evalm(A)) elif
nops (FBgens)=4 then fb:=sort(remove (has,FBgens,Id),bygrade);
AA:=subs(’ii’=fb[1],’jj’=fb[2], ’kk’=fb[3],evalm(A))
else ERROR(‘wrong number of elements ’FBgens’‘) fij;
N:=nops([indices(m)]);n:=linalg[coldim] (B) :cb:=cbasis(n);
M:=map(displayid,evalm(AA-add(aljl*m[j],j=1..N)));
L:=map(clicollect,convert(M,mlist));
sys:=op(map(coeffs,L,FBgens)) ;vars:=seq(aljl,j=1..N);
sol:=solve(sys,vars); vars:=seq(aljl*cb[jl,j=1..N);
p:=subs(sol,p) ;RETURN (p)
end:

Procedure ’climinpoly’ finds a real minimal polynomial of any Clifford polynomial p in
an arbitrary Clifford algebra CY, ,.

> climinpoly:=proc(p::clipolynom,s::string)
local dp,L,flag,pp,expr,a,k,eq,sys,vars,sol,poly;
option remember;
dp:=displayid(p):L:=[Id,dp];flag:=false:
while not flag do
pp:=cmul (L [nops(L)],dp):
expr :=expand (add (a [k] *L[k] ,k=1. .nops(L)));
eq:=clicollect (pp-expr); sys:=coeffs(eq,cliterms(eq));
vars:=seq(alk] ,k=1..nops(L)); sol:=solve(sys,vars):
if sol<> then flag:=true else L:=[op(L),pp] fi;
od;
poly:="x’"nops(L)-add(alk]*’x’"(k-1) ,k=1. .nops(L));
if nargs=1 then RETURN(sort (subs(op(sol),poly)))
else RETURN([sort(subs(op(sol),poly)),L]) fi;
end:

n

Procedure ’sexp’ finds a finite formal power series expansion 3~ (p*/k!) of any Clifford
k=0

polynomial p up to and including the degree specified as its second argument. Com-

putation of the powers of p in C¥,, is performed modulo the real minimal polynomial
of p.

> sexp:=proc(p::clipolynom,n: :posint) local i,d,L,Lp,pol,poly,k;
pol:=climinpoly(p,’s’);readlib(powmod) ;
poly:=add(powmod(’x’,k,pol[1],’x’)/k!,k=0..n);
L:=[op(poly)];Lp:=[]:
for i from 1 to nops(L) do

®To download ‘CLIFFORD’, see the Web site in [9].
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d:=degree(L[i]);
if d=0 then Lp:=[op(Lp),L[i]*Id] else
Lp:=[op(Lp) ,coeffs(L[i])*pol[2] [d+1]] fi od;

RETURN (add (Lp[i],i=1..nops (Lp)))

end:
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