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Abstract
Reduction of a nonlinear system of differential equations for spinor field is studied.
The ansatzes obtained are shown to correspond to operators of conditional symmetry
of these equations.

Let us consider the nonlinear system of differential equations (DE) for a spinor field{
−i(γ0 + γ4)∂t + iγa∂a +m(γ0 − γ4) + f1(ψ̄ψ, ψ̄(γ0 + γ4)ψ)+

f2(ψ̄ψ, ψ(γ0 + γ4)ψ)(γ0 + γ4)
}
ψ = 0,

(1)

where ψ = ψ(t, x̄) is four-component complex function, γ0, . . . , γ4 — Dirac matrix (4× 4),

∂t =
∂

∂t
, ∂a =

∂

∂xa
, a = 1, 3; f1f2 ⊂ C2(R2, C1);m = const. It is known that this system

is invariant under the Galilei group. For finding exact solutions of system (1) the ansatz

ψ(t, x̄) = exp iθ0 + θaγa(γ0 + γ4)ϕ(ω), (2)

is used [1]. Here θ0, . . . , θ3, ω are real scalar functions, which are chosen so that the
substitution (2) into system (1) would lead to a system of ordinary DE for the function
ϕ(ω) [2]. This substitution leads to the following system of nonlinear DE for the functions
θµ(t, x̄), ω(t, x̄):

rot θ̄ = F̄ (ω), div θ̄ = F4(ω),
∂tθ0 + 2θa∂aθa + 4mθaθa = F5(ω), ∂aθ0 + 4mθa = F5+a(ω),
∂tω + 2θa∂aθ0 = F9(ω), ∂aω = F9+a(ω).

(3)

Here and further, summation is meant over recurring indices, F1–F12 are arbitrary smooth
real functions, a = 1, 2, 3.

We find the solutions which are determined up to equivalence under the Galilei group.
Due to arbitrariness of ϕ(ω), the substitution θµ, ω and θµ +hµ(ω), h(ω) into (2) gives the
same ansatz for ψ(t, x̄). That is why we consider such solutions as equivalent.
Theorem. The general solution of the system of ordinary DE (3), which is determined
up to equivalence introduced above, is def ined by one of the following formulae.
1. m = 0

1) ω = x1 +W1(t),
θ0 = C3(x2 − 2W2(t)) + C4(x3 − 2W3(t)) + C5t,

θ1 = −1
2Ẇ1(t),

θ2 = −α(C3x2 + C4x3) + Ẇ2(t) + C1x2,

θ3 = α(C3x3 + C4x2) + Ẇ3(t) + C2x2,
α = (C1C3 + C2C4)(C2

3 + C2
4 )−1,

(4)
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2) ω = x1 +W0(t),
θ0 = C3t,

θ1 = −1
2Ẇ0(t),

θ2 = U(z, t) + U(z∗, t) + C1x2,
θ3 = i(U(z, t)− U(z∗, t)) + C2x2,
z = x2 + ix3,

3) ω = t,
θ0 = xbgb(t), b = 1, 3,
θa = εabchb(t)xc + ∂aΦ +W (t)xa,

here the function Φ = Φ(t, x̄) is defined by the following expressions
a) for g1 = g2 = g3, ∂a∂aΦ = 0,
b) for g2 = 0, g3 6= 0

Φ = g−1
3

[
r1x1x3 + r2x2x3 + r4x3 +

1
2
r3x

2
3 −

1
2
g−1
3 g1r1x

2
3 +

1
2
(g−1

3 g1r1 − r3)x2
2

]
+

U(z, t) + U(z∗, t),

z = (g2
1 + g2

3)
− 1

2 (g1x3 − g3x1) + ix2,

c) for g1 6= 0, g3 = 0

Φ = g−1
1

[
1
2
r1x

2
1 −

1
2
g−1
1 g2r2x

2
1 + r2x1x2 + r3x1x2 + r4x1 +

1
2
(g−1

1 g2r2 − r1)x2
3

]
+

U(z, t) + U(z∗, t),

z = (g2
1 + g2

3)
− 1

2 (g1x3 − g3x1) + ix2,

d) for g2
1 + g2

2 6= 0, g3 = 0

Φ =
1
2
g−2
3 r1(2g3x1x3 − g1x

2
3)g3r2(2g3x2x3 − g2x

2
3) +

1
2
g−1
3 (r3x2

3 + 2r4x3)+

1
2
g2
3(g

2
1 + g2

2)
−1(r1g1 + r2g2 − r3g3)(g2x1 − g1x2)2 + U(z, t) + U(z∗, t),

z = [(g2
1 + g2

2)
−1(g2

2 + g2
3)− g2

1g
2
3(g

2
1 + g2

2)
−2]

1
2 (g2x1 − g1x2)+

i[g1g3(g2
1 + g2

2)
−1(g2x1 − g1x2) + g3x2 − g2x3];

In the formula a)–d)

r1 = −
(
g1W + g2h3 − h2g3 +

1
2
ġ1

)
, r2 = −

(
g2W + g3h1 − g1h3 +

1
2
ġ2

)
,

r3 = −
(
g3W + g1h2 − g2h1 +

1
2
ġ3

)
, r4 = W0(t).

2. m 6= 0

1) ω = x1 + 4m)−1C5t
2
1 + C7t,

θ0 = (2mC7 + C5t)ω + (C3 − 4mC1)x2 + (C4 − 4mC2)x3 − (12m)−1C2
5 t

3−
1
2C5C7t

2 + C6t,
θ1 = −(4m)−1C5t− 1

2C7,
θ2 = C1,
θ3 = C2;
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2) ω = t,
θ0 = −2mW0xaxa +Raxa − 4m(Tabxaxb + Taxa),
θa = W0xa + 2Tabxb + Ta,

where Ra(t), Tab(t), Ta(t) are real functions which satisfy the system of ordinary DE

Ṫ0 + 2Ṫaa + 2(T 2
1a + T 2

2a + T 2
3a) + 8W0Taa = 0.

Ṫab + 4(T1aT1b + T2aT2b + T3aT3b) + 4W0Tab = 0, a 6= b,

Ṙa − 4mṪa − 8mW0 − 16mTabTb + 4Tab + 2W0Ra = 0

(no summation over a), besides Tab = Tba, T11 + T22 + T33 = 0.
In the formula (4) ga(t), ha(t) are arbitrary smooth functions. U is an arbitrary ana-

lytical with respect to z function, C1, C2, . . . , C7 are constants.
The substitution of formula (4) into expression (2) gives a collection of ansatzes for

the field ψ(t, x̄) which reduce system (1) to systems of ordinary DE

1. 1) iγ1ϕ̇+ i[(C2γ1 − C1 − iC5)(γ0 + γ4)− iC3γ2 + iC4γ3]ϕ = R;

2) iγ1ϕ̇+ i(C2γ1 − C1 − iC5)(γ0 + γ4)ϕ = R;

3) −i(γ0 + γ4)ϕ̇+ i[(2ha + iga)γa − (3W + iW0)(γ0 + g4)]ϕ = R;

2. 1) iγ1ϕ̇+ [(C5ω + C6 +m(C2
7 − 4C2

1 − 4C2
2 ) + 2C1C3 + 2C2C4)×

(γ0 + γ4)− C3γ2 − C4γ3 +m(γ0 − γ4)]ϕ = R;

2) −i(γ0 + γ4)ϕ̇+ [−3iW0(γ0 + γ4) + (2RaTa − 4mTaTa)×

(γ0 + γ4) +Raγa +m(γ0 − γ4)]ϕ = R,

R = [f1(ϕ̄ϕ, ϕ̄(γ0 + γ4)ϕ) + f2(ϕ̄ϕ, ϕ̄(γ0 + γ4)ϕ)(γ0 + γ4)]ϕ.

(5)

In general, the systems (5) cannot be integrated in quadratures. However, in some
cases systems 1.2), 1.3) can be linearized and, consequently, their general solutions can be
constructed. In particular, if

f1 = iH1, f2 = H2 + iH3 in the case 1.2)

F2 = 0, f2 = H2, ha = ga = W = W0 ≡ 0 in the case 1.3),

where Hi = Hi(ϕ̄(γ0 + γ4)ϕ) are smooth enough real functions, then

ϕ̄(γ0 + γ4)ϕ = χ(γ0 + γ4)χ, (6)

where χ is a constant four-component spinor.
The substitution of (6) into 1.2), 1.3) gives linear systems, whose solutions have the

form

ϕ = exp {[γ1(C1γ1 − C2 − iC5)(γ0 + γ4)− γ1H1(χ(γ0 + γ4)χ)+

γ1(γ0 + γ4)(ih2(χ̄(γ0 + γ4)χ)− (χ̄(γ0 + γ4)χ))](x1 +W (t))}χ,
(7)

ϕ = exp{iH − 2(χ(γ0 + γ4)χ)t}χ. (8)
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Substitution of (7) and 1.2) from (4), (8) and 1.3(a) from (4) in (2) gives the following
classes of solutions for the equation (1)

ψ(t, x̄) = exp
{
iC3t−

1
2
W (t)γ1(γ0 + γ4) + (U(z, t) + U(z∗, t) + C2x2)×

γ2(γ0 + γ4) + (i(U(z, t) + C1x1)γ3(γ0 + γ4)
}
×

exp
{
[(C1γ1 − C2 − iC5)γ1(γ0 + γ4)−H1(χ̄(γ0 + γ4)χ)γ1+

(iH2(χ̄(γ0 + γ4)χ)−H3(χ̄(γ0 + γ4)χ))γ1(γ0 + γ4)](x1 +W (t))
}
χ,

(9)

ψ(t, x̄) = exp
{
ih2(χ̄(γ0 + γ4)χ)t+ ∂aϕγa(γ0 + γ4)

}
χ, (10)

where z = x2 + ix3, W (t) ∈ C2(R1), U is an arbitrary analytic function with respect to
z,Φ satisfies the three-dimensional Laplace equation ∂a∂aΦ = 0, χ is a constant four-
component spinor.

It is necessary to emphasize that the ansatzes (2), where θ are defined by expressions
1.2), 1.3) from (4) and consequently solutions (9), (10) cannot be obtained by the tra-
ditional Lie approach. These ansatzes can be found by using a conditional symmetry of
the non-linear equation (1). For these ansatzes let us write our differential operators for
which Qaψ = 0, a = 1, 3 are satisfied.

1. 2) Q1 = ∂1 − Ẇ∂1 − iC5 +
1
2
Ẅγ1(γ0 + γ4)− ∂1(U + U∗)×

γ2(γ0 + γ4)− i∂1(U − U∗)γ3(γ0 + γ4),

Q2 = ∂2 − (∂zU + ∂z∗U
∗ + C2)γ2(γ0 + γ4)− (i∂zU − i∂z∗U

∗ + C1)γ3(γ0 + γ4),

Q3 = ∂3 − i(∂zU − ∂z∗U
∗)γ2(γ0 + γ4) + (∂z, U + ∂z∗U

∗)γ3(γ0 + γ4);

1. 3) Q1 = ∂1 − [(∂1∂1Φ +W )γ1 + (∂1∂2Φ + h3)γ2 + (∂1∂3Φ− h2)γ3](γ0 + γ4),

Q2 = ∂2 − [(∂1∂2Φ− h3)γ1 + (∂2∂2Φ +W )γ2 + (∂2∂3Φ + h1)γ3](γ0 + γ4),

Q3 = ∂3 − [(∂1∂3Φ− h2)γ1 + (∂2∂3Φ− h1)γ2 + (∂3∂3Φ +W )γ3](γ0 + γ4).

The direct check-up shows that equation (1) is conditionally-invariant under operators
Q1, Q2, Q3.
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