Conditional Symmetry and Exact Solutions of a Nonlinear Galilei-Invariant Spinor Equation

Andrey ANDREYTSEV
Kherson Industrial Institute, Kherson, Ukraïna

Abstract

Reduction of a nonlinear system of differential equations for spinor field is studied. The ansatzes obtained are shown to correspond to operators of conditional symmetry of these equations.

Let us consider the nonlinear system of differential equations (DE) for a spinor field

$$
\begin{align*}
& \left\{-i\left(\gamma_{0}+\gamma_{4}\right) \partial_{t}+i \gamma_{a} \partial_{a}+m\left(\gamma_{0}-\gamma_{4}\right)+f_{1}\left(\bar{\psi} \psi, \bar{\psi}\left(\gamma_{0}+\gamma_{4}\right) \psi\right)+\right. \tag{1}\\
& \left.f_{2}\left(\bar{\psi} \psi, \psi\left(\gamma_{0}+\gamma_{4}\right) \psi\right)\left(\gamma_{0}+\gamma_{4}\right)\right\} \psi=0
\end{align*}
$$

where $\psi=\psi(t, \bar{x})$ is four-component complex function, $\gamma_{0}, \ldots, \gamma_{4}-\operatorname{Dirac}$ matrix (4×4), $\partial_{t}=\frac{\partial}{\partial t}, \partial_{a}=\frac{\partial}{\partial x_{a}}, a=\overline{1,3} ; f_{1} f_{2} \subset C_{2}\left(R^{2}, C^{1}\right) ; m=$ const. It is known that this system is invariant under the Galilei group. For finding exact solutions of system (1) the ansatz

$$
\begin{equation*}
\psi(t, \bar{x})=\exp i \theta_{0}+\theta_{a} \gamma_{a}\left(\gamma_{0}+\gamma_{4}\right) \varphi(\omega) \tag{2}
\end{equation*}
$$

is used [1]. Here $\theta_{0}, \ldots, \theta_{3}, \omega$ are real scalar functions, which are chosen so that the substitution (2) into system (1) would lead to a system of ordinary DE for the function $\varphi(\omega)$ [2]. This substitution leads to the following system of nonlinear DE for the functions $\theta_{\mu}(t, \bar{x}), \omega(t, \bar{x}):$

$$
\begin{array}{ll}
\operatorname{rot} \bar{\theta}=\bar{F}(\omega), & \operatorname{div} \bar{\theta}=F_{4}(\omega), \\
\partial_{t} \theta_{0}+2 \theta_{a} \partial_{a} \theta_{a}+4 m \theta_{a} \theta_{a}=F_{5}(\omega), & \partial_{a} \theta_{0}+4 m \theta_{a}=F_{5+a}(\omega), \tag{3}\\
\partial_{t} \omega+2 \theta_{a} \partial_{a} \theta_{0}=F_{9}(\omega), & \partial_{a} \omega=F_{9+a}(\omega)
\end{array}
$$

Here and further, summation is meant over recurring indices, $F_{1}-F_{12}$ are arbitrary smooth real functions, $a=1,2,3$.

We find the solutions which are determined up to equivalence under the Galilei group. Due to arbitrariness of $\varphi(\omega)$, the substitution θ_{μ}, ω and $\theta_{\mu}+h_{\mu}(\omega), h(\omega)$ into (2) gives the same ansatz for $\psi(t, \bar{x})$. That is why we consider such solutions as equivalent.
Theorem. The general solution of the system of ordinary $D E$ (3), which is determined up to equivalence introduced above, is def ined by one of the following formulae.

1. $m=0$

$$
\text { 1) } \begin{align*}
& \omega=x_{1}+W_{1}(t), \\
& \theta_{0}=C_{3}\left(x_{2}-2 W_{2}(t)\right)+C_{4}\left(x_{3}-2 W_{3}(t)\right)+C_{5} t, \\
& \theta_{1}=-\frac{1}{2} \dot{W}_{1}(t), \tag{4}\\
& \theta_{2}=-\alpha\left(C_{3} x_{2}+C_{4} x_{3}\right)+\dot{W}_{2}(t)+C_{1} x_{2}, \\
& \theta_{3}=\alpha\left(C_{3} x_{3}+C_{4} x_{2}\right)+\dot{W}_{3}(t)+C_{2} x_{2}, \\
& \alpha=\left(C_{1} C_{3}+C_{2} C_{4}\right)\left(C_{3}^{2}+C_{4}^{2}\right)^{-1},
\end{align*}
$$

Copyright © 1997 by Mathematical Ukraina Publisher.
All rights of reproduction in any form reserved.
2) $\omega=x_{1}+W_{0}(t)$,
$\theta_{0}=C_{3} t$,
$\theta_{1}=-\frac{1}{2} \dot{W}_{0}(t)$,
$\theta_{2}=U(z, t)+U\left(z^{*}, t\right)+C_{1} x_{2}$,
$\theta_{3}=i\left(U(z, t)-U\left(z^{*}, t\right)\right)+C_{2} x_{2}$,
$z=x_{2}+i x_{3}$,
3) $\omega=t$,

$$
\theta_{0}=x_{b} g_{b}(t), \quad b=\overline{1,3}
$$

$$
\theta_{a}=\varepsilon_{a b c} h_{b}(t) x_{c}+\partial_{a} \Phi+W(t) x_{a}
$$

here the function $\Phi=\Phi(t, \bar{x})$ is defined by the following expressions
a) for $g_{1}=g_{2}=g_{3}, \partial_{a} \partial_{a} \Phi=0$,
b) for $g_{2}=0, \quad g_{3} \neq 0$

$$
\begin{aligned}
\Phi= & g_{3}^{-1}\left[r_{1} x_{1} x_{3}+r_{2} x_{2} x_{3}+r_{4} x_{3}+\frac{1}{2} r_{3} x_{3}^{2}-\frac{1}{2} g_{3}^{-1} g_{1} r_{1} x_{3}^{2}+\frac{1}{2}\left(g_{3}^{-1} g_{1} r_{1}-r_{3}\right) x_{2}^{2}\right]+ \\
& \quad U(z, t)+U\left(z^{*}, t\right) \\
z= & \left(g_{1}^{2}+g_{3}^{2}\right)^{-\frac{1}{2}}\left(g_{1} x_{3}-g_{3} x_{1}\right)+i x_{2}
\end{aligned}
$$

c) for $g_{1} \neq 0, \quad g_{3}=0$

$$
\begin{aligned}
\Phi= & g_{1}^{-1}\left[\frac{1}{2} r_{1} x_{1}^{2}-\frac{1}{2} g_{1}^{-1} g_{2} r_{2} x_{1}^{2}+r_{2} x_{1} x_{2}+r_{3} x_{1} x_{2}+r_{4} x_{1}+\frac{1}{2}\left(g_{1}^{-1} g_{2} r_{2}-r_{1}\right) x_{3}^{2}\right]+ \\
& U(z, t)+U\left(z^{*}, t\right) \\
z= & \left(g_{1}^{2}+g_{3}^{2}\right)^{-\frac{1}{2}}\left(g_{1} x_{3}-g_{3} x_{1}\right)+i x_{2}
\end{aligned}
$$

d) for $g_{1}^{2}+g_{2}^{2} \neq 0, g_{3}=0$

$$
\begin{aligned}
\Phi= & \frac{1}{2} g_{3}^{-2} r_{1}\left(2 g_{3} x_{1} x_{3}-g_{1} x_{3}^{2}\right) g_{3} r_{2}\left(2 g_{3} x_{2} x_{3}-g_{2} x_{3}^{2}\right)+\frac{1}{2} g_{3}^{-1}\left(r_{3} x_{3}^{2}+2 r_{4} x_{3}\right)+ \\
& \frac{1}{2} g_{3}^{2}\left(g_{1}^{2}+g_{2}^{2}\right)^{-1}\left(r_{1} g_{1}+r_{2} g_{2}-r_{3} g_{3}\right)\left(g_{2} x_{1}-g_{1} x_{2}\right)^{2}+U(z, t)+U\left(z^{*}, t\right), \\
z= & {\left[\left(g_{1}^{2}+g_{2}^{2}\right)^{-1}\left(g_{2}^{2}+g_{3}^{2}\right)-g_{1}^{2} g_{3}^{2}\left(g_{1}^{2}+g_{2}^{2}\right)^{-2}\right]^{\frac{1}{2}}\left(g_{2} x_{1}-g_{1} x_{2}\right)+} \\
& i\left[g_{1} g_{3}\left(g_{1}^{2}+g_{2}^{2}\right)^{-1}\left(g_{2} x_{1}-g_{1} x_{2}\right)+g_{3} x_{2}-g_{2} x_{3}\right] ;
\end{aligned}
$$

In the formula a)-d)

$$
\begin{array}{ll}
r_{1}=-\left(g_{1} W+g_{2} h_{3}-h_{2} g_{3}+\frac{1}{2} \dot{g}_{1}\right), \quad r_{2}=-\left(g_{2} W+g_{3} h_{1}-g_{1} h_{3}+\frac{1}{2} \dot{g}_{2}\right), \\
r_{3}=-\left(g_{3} W+g_{1} h_{2}-g_{2} h_{1}+\frac{1}{2} \dot{g}_{3}\right), \quad r_{4}=W_{0}(t)
\end{array}
$$

2. $m \neq 0$
1) $\left.\omega=x_{1}+4 m\right)^{-1} C_{5} t_{1}^{2}+C_{7} t$,

$$
\begin{aligned}
\theta_{0} & =\left(2 m C_{7}+C_{5} t\right) \omega+\left(C_{3}-4 m C_{1}\right) x_{2}+\left(C_{4}-4 m C_{2}\right) x_{3}-(12 m)^{-1} C_{5}^{2} t^{3}- \\
& \frac{1}{2} C_{5} C_{7} t^{2}+C_{6} t, \\
\theta_{1} & =-(4 m)^{-1} C_{5} t-\frac{1}{2} C_{7}, \\
\theta_{2} & =C_{1}, \\
\theta_{3} & =C_{2} ;
\end{aligned}
$$

2) $\omega=t$,

$$
\begin{aligned}
& \theta_{0}=-2 m W_{0} x_{a} x_{a}+R_{a} x_{a}-4 m\left(T_{a b} x_{a} x_{b}+T_{a} x_{a}\right), \\
& \theta_{a}=W_{0} x_{a}+2 T_{a b} x_{b}+T_{a}
\end{aligned}
$$

where $R_{a}(t), T_{a b}(t), T_{a}(t)$ are real functions which satisfy the system of ordinary $D E$

$$
\begin{aligned}
& \dot{T}_{0}+2 \dot{T}_{a a}+2\left(T_{1 a}^{2}+T_{2 a}^{2}+T_{3 a}^{2}\right)+8 W_{0} T_{a a}=0 . \\
& \dot{T}_{a b}+4\left(T_{1 a} T_{1 b}+T_{2 a} T_{2 b}+T_{3 a} T_{3 b}\right)+4 W_{0} T_{a b}=0, \quad a \neq b \\
& \dot{R}_{a}-4 m \dot{T}_{a}-8 m W_{0}-16 m T_{a b} T_{b}+4 T_{a b}+2 W_{0} R_{a}=0
\end{aligned}
$$

(no summation over a), besides $T_{a b}=T_{b a}, T_{11}+T_{22}+T_{33}=0$.
In the formula (4) $g_{a}(t), h_{a}(t)$ are arbitrary smooth functions. U is an arbitrary analytical with respect to z function, $C_{1}, C_{2}, \ldots, C_{7}$ are constants.

The substitution of formula (4) into expression (2) gives a collection of ansatzes for the field $\psi(t, \bar{x})$ which reduce system (1) to systems of ordinary DE

1. 2) $i \gamma_{1} \dot{\varphi}+i\left[\left(C_{2} \gamma_{1}-C_{1}-i C_{5}\right)\left(\gamma_{0}+\gamma_{4}\right)-i C_{3} \gamma_{2}+i C_{4} \gamma_{3}\right] \varphi=R$;
2) $i \gamma_{1} \dot{\varphi}+i\left(C_{2} \gamma_{1}-C_{1}-i C_{5}\right)\left(\gamma_{0}+\gamma_{4}\right) \varphi=R$;
3) $-i\left(\gamma_{0}+\gamma_{4}\right) \dot{\varphi}+i\left[\left(2 h_{a}+i g_{a}\right) \gamma_{a}-\left(3 W+i W_{0}\right)\left(\gamma_{0}+g_{4}\right)\right] \varphi=R$;
2. 3) $i \gamma_{1} \dot{\varphi}+\left[\left(C_{5} \omega+C_{6}+m\left(C_{7}^{2}-4 C_{1}^{2}-4 C_{2}^{2}\right)+2 C_{1} C_{3}+2 C_{2} C_{4}\right) \times\right.$ $\left.\left(\gamma_{0}+\gamma_{4}\right)-C_{3} \gamma_{2}-C_{4} \gamma_{3}+m\left(\gamma_{0}-\gamma_{4}\right)\right] \varphi=R ;$
2) $-i\left(\gamma_{0}+\gamma_{4}\right) \dot{\varphi}+\left[-3 i W_{0}\left(\gamma_{0}+\gamma_{4}\right)+\left(2 R_{a} T_{a}-4 m T_{a} T_{a}\right) \times\right.$ $\left.\left(\gamma_{0}+\gamma_{4}\right)+R_{a} \gamma_{a}+m\left(\gamma_{0}-\gamma_{4}\right)\right] \varphi=R$, $R=\left[f_{1}\left(\bar{\varphi} \varphi, \bar{\varphi}\left(\gamma_{0}+\gamma_{4}\right) \varphi\right)+f_{2}\left(\bar{\varphi} \varphi, \bar{\varphi}\left(\gamma_{0}+\gamma_{4}\right) \varphi\right)\left(\gamma_{0}+\gamma_{4}\right)\right] \varphi$.

In general, the systems (5) cannot be integrated in quadratures. However, in some cases systems 1.2), 1.3) can be linearized and, consequently, their general solutions can be constructed. In particular, if

$$
\begin{aligned}
& f_{1}=i H_{1}, f_{2}=H_{2}+i H_{3} \quad \text { in the case 1.2) } \\
& F_{2}=0, f_{2}=H_{2}, h_{a}=g_{a}=W=W_{0} \equiv 0 \quad \text { in the case 1.3), }
\end{aligned}
$$

where $H_{i}=H_{i}\left(\bar{\varphi}\left(\gamma_{0}+\gamma_{4}\right) \varphi\right)$ are smooth enough real functions, then

$$
\begin{equation*}
\bar{\varphi}\left(\gamma_{0}+\gamma_{4}\right) \varphi=\chi\left(\gamma_{0}+\gamma_{4}\right) \chi \tag{6}
\end{equation*}
$$

where χ is a constant four-component spinor.
The substitution of (6) into 1.2), 1.3) gives linear systems, whose solutions have the form

$$
\begin{align*}
\varphi= & \exp \left\{\left[\gamma_{1}\left(C_{1} \gamma_{1}-C_{2}-i C_{5}\right)\left(\gamma_{0}+\gamma_{4}\right)-\gamma_{1} H_{1}\left(\chi\left(\gamma_{0}+\gamma_{4}\right) \chi\right)+\right.\right. \\
& \left.\left.\gamma_{1}\left(\gamma_{0}+\gamma_{4}\right)\left(i h_{2}\left(\bar{\chi}\left(\gamma_{0}+\gamma_{4}\right) \chi\right)-\left(\bar{\chi}\left(\gamma_{0}+\gamma_{4}\right) \chi\right)\right)\right]\left(x_{1}+W(t)\right)\right\} \chi \tag{7}\\
\varphi= & \exp \left\{i H-2\left(\chi\left(\gamma_{0}+\gamma_{4}\right) \chi\right)^{t}\right\} \chi \tag{8}
\end{align*}
$$

Substitution of (7) and 1.2) from (4), (8) and 1.3(a) from (4) in (2) gives the following classes of solutions for the equation (1)

$$
\begin{align*}
& \psi(t, \bar{x})=\exp \left\{i C_{3} t-\frac{1}{2} W(t) \gamma_{1}\left(\gamma_{0}+\gamma_{4}\right)+\left(U(z, t)+U\left(z^{*}, t\right)+C_{2} x_{2}\right) \times\right. \\
& \gamma_{2}\left(\gamma_{0}+\gamma_{4}\right)+\left(i\left(U(z, t)+C_{1} x_{1}\right) \gamma_{3}\left(\gamma_{0}+\gamma_{4}\right)\right\} \times \tag{9}\\
& \exp \left\{\left[\left(C_{1} \gamma_{1}-C_{2}-i C_{5}\right) \gamma_{1}\left(\gamma_{0}+\gamma_{4}\right)-H_{1}\left(\bar{\chi}\left(\gamma_{0}+\gamma_{4}\right) \chi\right) \gamma_{1}+\right.\right. \\
& \left.\left.\left(i H_{2}\left(\bar{\chi}\left(\gamma_{0}+\gamma_{4}\right) \chi\right)-H_{3}\left(\bar{\chi}\left(\gamma_{0}+\gamma_{4}\right) \chi\right)\right) \gamma_{1}\left(\gamma_{0}+\gamma_{4}\right)\right]\left(x_{1}+W(t)\right)\right\} \chi \\
& \psi(t, \bar{x})=\exp \left\{i h_{2}\left(\bar{\chi}\left(\gamma_{0}+\gamma_{4}\right) \chi\right) t+\partial_{a} \varphi \gamma_{a}\left(\gamma_{0}+\gamma_{4}\right)\right\} \chi \tag{10}
\end{align*}
$$

where $z=x_{2}+i x_{3}, W(t) \in C^{2}\left(R^{1}\right), U$ is an arbitrary analytic function with respect to z, Φ satisfies the three-dimensional Laplace equation $\partial_{a} \partial_{a} \Phi=0, \quad \chi$ is a constant fourcomponent spinor.

It is necessary to emphasize that the ansatzes (2), where θ are defined by expressions $1.2), 1.3$) from (4) and consequently solutions (9), (10) cannot be obtained by the traditional Lie approach. These ansatzes can be found by using a conditional symmetry of the non-linear equation (1). For these ansatzes let us write our differential operators for which $Q_{a} \psi=0, a=\overline{1,3}$ are satisfied.

1. 2) $Q_{1}=\partial_{1}-\dot{W} \partial_{1}-i C_{5}+\frac{1}{2} \ddot{W} \gamma_{1}\left(\gamma_{0}+\gamma_{4}\right)-\partial_{1}\left(U+U^{*}\right) \times$

$$
\begin{aligned}
& \gamma_{2}\left(\gamma_{0}+\gamma_{4}\right)-i \partial_{1}\left(U-U^{*}\right) \gamma_{3}\left(\gamma_{0}+\gamma_{4}\right) \\
& Q_{2}=\partial_{2}-\left(\partial_{z} U+\partial_{z^{*}} U^{*}+C_{2}\right) \gamma_{2}\left(\gamma_{0}+\gamma_{4}\right)-\left(i \partial_{z} U-i \partial_{z^{*}} U^{*}+C_{1}\right) \gamma_{3}\left(\gamma_{0}+\gamma_{4}\right), \\
& Q_{3}=\partial_{3}-i\left(\partial_{z} U-\partial_{z^{*}} U^{*}\right) \gamma_{2}\left(\gamma_{0}+\gamma_{4}\right)+\left(\partial_{z}, U+\partial_{z^{*}} U^{*}\right) \gamma_{3}\left(\gamma_{0}+\gamma_{4}\right)
\end{aligned}
$$

1. 3) $Q_{1}=\partial_{1}-\left[\left(\partial_{1} \partial_{1} \Phi+W\right) \gamma_{1}+\left(\partial_{1} \partial_{2} \Phi+h_{3}\right) \gamma_{2}+\left(\partial_{1} \partial_{3} \Phi-h_{2}\right) \gamma_{3}\right]\left(\gamma_{0}+\gamma_{4}\right)$,
$Q_{2}=\partial_{2}-\left[\left(\partial_{1} \partial_{2} \Phi-h_{3}\right) \gamma_{1}+\left(\partial_{2} \partial_{2} \Phi+W\right) \gamma_{2}+\left(\partial_{2} \partial_{3} \Phi+h_{1}\right) \gamma_{3}\right]\left(\gamma_{0}+\gamma_{4}\right)$,
$Q_{3}=\partial_{3}-\left[\left(\partial_{1} \partial_{3} \Phi-h_{2}\right) \gamma_{1}+\left(\partial_{2} \partial_{3} \Phi-h_{1}\right) \gamma_{2}+\left(\partial_{3} \partial_{3} \Phi+W\right) \gamma_{3}\right]\left(\gamma_{0}+\gamma_{4}\right)$.
The direct check-up shows that equation (1) is conditionally-invariant under operators Q_{1}, Q_{2}, Q_{3}.

References

[1] Fushchych W.I., Zhdanov R.Z., Symmetry and Exact Solutions of Nonlinear Spinor Equations, Phys. Repts., 1989, V.46, N 2, 325-365.
[2] Zhdanov R.Z., Andreytsev A.Y., On non-Lie reduction of nonlinear Galilei-invariant equations for spinor field, Dokl. AN Ukr.SSR. Ser. A, 1990, 8-11.
[3] Andreytsev A.Y., On new exact solutions of nonlinear Galilei-invariant spinor equation for a zero mass particle, in: Symmetry Analysis of Equations of Mathematical Physics Kiev, Institute of Mathematics, 1992, 44-46.
[4] Fushchych W.I., Shtelen W.M., Serov M.I., Symmetry Analysis and Exact Solutions of Nonlinear Equations of Mathematical Physics, Kiev, Naukova Dumka, 1989, 336p.
[5] Fushchych W.I., Zhdanov R.Z., Nonlinear Spinor Equations: Symmetry and Exact Solutions, Kiev, Naukova Dumka, 1992, 288p.

