Mean Field Theories and Dual Variation
ISBN: 978-90-78677-14-7

by Takashi Suzuki (Osaka University, Japan)

Series: Atlantis Studies in Mathematics for Engineering and Science, Volume 2.

A mathematical theory is introduced in this book to unify a large class of nonlinear partial differential equation (PDE) models for better understanding and analysis of the physical and biological phenomena they represent. The so-called mean field approximation approach is adopted to describe the macroscopic phenomena from certain microscopic principles for this unified mathematical formulation. Two key ingredients for this approach are the notions of “duality” according to the PDE weak solutions and “hierarchy” for revealing the details of the otherwise hidden secrets, such as physical mystery hidden between particle density and field concentration, quantized blow up biological mechanism sealed in chemotaxis systems, as well as multi-scale mathematical explanations of the Smoluchowski–Poisson model in non-equilibrium thermodynamics, two-dimensional turbulence theory, self-dual gauge theory, and so forth. This book shows how and why many different nonlinear problems are inter-connected in terms of the properties of duality and scaling, and the way to analyze them mathematically.

- Duality-Sealed Variation:

  • Chemotaxis
  • Toland Duality
  • Phenomenology
  • Thermodynamics
  • Phase Fields

- Scaling-Revealing Hierarchy:

  • Self-Interaction Continuum
  • Particle Kinetics
  • Gauge Field

Higher-Dimensional Blowup
Readership: Graduate students, academic and industry researchers, R&D engineers.
“Overall, this book may serve as a general guide to the duality method for variational models (both convex and non-convex).” Mathematical Reviews

Publishing Date: January 2009
Hardbound, 300 pages
Price: €80.00.

back to AMES page