
Nonlinear Mathematical Physics 1996, V.3, N 3–4, 372–378.

Symmetries of the Relativistic Two-Particle

Model with Scalar-Vector Interaction

Askold DUVIRYAK

Institute for Condensed Matter Physics
of the Ukrainian National Academy of Sciences,
1 Svientsitskii Street, Lviv, 290011, Ukräına

Abstract

A relativistic two-particle model with superposition of time-asymmetric scalar and
vector interactions is proposed and its symmetries are considered. It is shown that
first integrals of motion satisfy nonlinear Poisson-bracket relations which include the
Poincaré algebra and one of the algebras so(1,3), so(4) or e(3).

Introduction

It is well-known that a nonrelativistic Galilei-invariant two-body system with Coulomb
interaction possesses additional internal symmetries. These symmetries provide particle
trajectories to be closed curves and lead to existence of an additional integral of motion.
It is the Runge-Lentz vector. In framework of the Hamiltonian formalism, the components
of this vector together with the internal angular momentum generate the algebra O(4) or
O(1, 3), when energy is negative or positive.

The Poincaré-invariant analog of such a system was proposed and its symmetries were
studied by Droz-Vincent and Nurkowski [1] within the relativistic predictive mechan-
ics. Their model is considered as a näıve exactly solvable relativistic generalization of a
Coulombian two-body system rather than a description of some realistic interaction.

Nevertheless, the internal symmetries can occur in some physically interpretable rel-
ativistic two-body models. Here such a model is constructed in framework of relativistic
light-cone mechanics [2–4]. Namely, the two-body system with equal–weighed superpo-
sition of vector and scalar time-asymmetric interactions naturally arises under transition
from the Fokker scalar-vector model [5] (Section 1) toward its manifestly covariant Hamil-
tonian formulation (Section 2) . In Section 3, existence of the relevant relativistic Runge-
Lentz vector is shown and its Poisson bracket relations are calculated. In Section 4, these
results are reformulated for more evidence in framework of the Bakamjian-Thomas model
[6]. The Section 5 shows how to obtain the relative and particle trajectories using the
Runge-Lentz vector instead of integration of the equations of motion.
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1 Time-Asymmetric Model With Scalar-Vector
Interaction

We start with the Fokker action integral for a two-particle system with an arbitrary
superposition of scalar and vector interactions [5]:

I =
2∑

a=1

ma

∫
dτa

√
ẋ2

a +
∫ ∫

dτ1dτ2(αẋ1 · ẋ2 + β
√

ẋ2
1

√
ẋ2

2)G(x). (1)

Here ma (a = 1, 2) is the rest mass of the a-th particle; xa
µ(τa) (µ = 0...3) are the covariant

coordinates of the a-th particle with the world line in the Minkowski space parametrized
by an arbitrary parameter τa; xµ ≡ x1

µ − x2
µ; ẋµ

a ≡ dxµ
a/dτa; α and β are the coupling

constants of vector and scalar interactions, respectively; G(x) = δ(x2) is symmetrical
Green’s function of the d’Alambert equation. We choose the time-like Minkowski metrics,
i.e., ‖ ηµν ‖= diag(+,−,−,−), and put the light speed to be unit.

The action (1) describes the system of the infinite number of degrees of freedom because
the equations of motion are difference-differential. The analysis of their solutions is a
complicated task.

The possible way to restrict the degrees of freedom to the finite number which is the
same as in a nonrelativistic case is to replace symmetric Green’s function in the right-hand
side (r.h.s.) of Eq.(1) by the retarded (advanced) one [7, 2–4]

G(x) = 2Θ(ηx0)δ(x2), η = ±1. (2)

Such a choice corresponds to the model in which particles interact in the following way:
advanced fields of the first particle act on the second and retarded fields of the second
particle act on the first.

The Green’s function (2) does not vanish only on that pairs of points of particle world
lines which satisfy the following condition:

x2 = 0, ηx0 > 0. (3)

This condition looks like the light-cone equation and permits to reduce the Fokker integral
(1)–(2) to the single-time action:

I =
∫

dτ(L + λx2), (4)

where the Lagrangian multiplier λ takes into account the light-cone condition (3) as the
holonomic constraint (an unkeeping constraint ηx0 > 0 is implied also), and the La-
grangian function has the form:

L =
2∑

a=1

ma

√
ẋ2

a +
αẋ1 · ẋ2 + β

√
ẋ2

1

√
ẋ2

2

ηẏ · x
, (5)

where yµ ≡ 1
2(xµ

1 + xµ
2 ).
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2 Manifest-Covariant Hamiltonian Formalism

Due to the manifest covariance of the Lagrangian formulation of the model, the transition
to the Hamiltonian formalism gives a 16-dimensional phase space with Poisson brackets
[..., ...] in terms of covariant coordinates yµ, xµ and conjugated momenta defined in usual
manner, i.e.,

Pµ = ∂L/∂ẏµ, wµ = ∂L/∂ẋµ. (6)

Since the Lagrangian (5) and constraint (3) are Poincaré-invariant, ten Noether’s in-
tegrals of motion exist. They are the total momentum of the system Pµ (6) and the total
angular momentum tensor

Jµν = yµPν − yνPµ + xµwν − xνwµ. (7)

Within the Hamiltonian description these Pµ and Jµν satisfy the canonical relations of the
Poincaré algebra:

[Pµ, Pν ] = 0, [Pµ, Jλσ] = −ηµλPσ + ηµσPλ,

[Jµν , Jλσ] = ηµλJνσ + ηνσJµλ − ηµσJνλ − ηνλJµσ. (8)

By virtue of parametric invariance of the action (4), the Lagrangian (5) is singular.
Thus, the Hamiltonian vanishes, i.e., H = ẏ · P + ẋ · w − L = 0 , and relations (6) are
not invertible. As a consequence, the dynamical so-called mass-shell constraint appears
which forms together with the light-cone constraint (3) the pair of first class ones. The
mass-shell constraint has the following form:

φ = φf + φint = 0, (9)

where

φf =
1
4
P 2 − 1

2
(m2

1 + m2
2) + (m2

1 −m2
2)

v · x
P · x

+ v2 (10)

is the free-particle term, and

φint = −α(P 2 −m2
1 −m2

2) + 2βm1m2

ηP · x
+

(α2 − β2)
(b1 − α)m2

2 + (b2 − α)m2
1 + 2βm1m2

ηP · x((b1 − α)(b2 − α)− β2)
(11)

describes the interaction. Here the following notations are used:

vµ ≡ P νΩνµ/P · x, Ωµν = xµwν − xνwµ; v · P ≡ 0, (12)

ba ≡ η
(1
2
P · x + (−)āv · x

)
, a = 1, 2; ā ≡ 3− a. (13)

The complicated structure of the mass-shell constraint promises interesting results of
a mechanical analysis of the model. This general case, however, is not a subject of the
present work. The examples of purely vector and scalar time-asymmetric interactions have
been studied in details in [4].

In the following special case β = κα, κ = ±1, the second term of φint (11) vanishes
and the mass-shell constraint becomes simpler to a great extent. For such an equal-
weighed superposition of scalar and vector interactions, one can expect the appearance of
internal symmetry. Further we take this case for our consideration and look for a relevant
relativistic analog of the Runge-Lentz vector.
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3 Relativistic Runge-Lentz Vector

It is convenient to simplify the free-particle term φf (10) of the mass-shell constraint,
which cumbersome form obscures a following treatment of the model and is caused by a
descriptional rather than dynamical reason. Let us perform the canonical transformation
(yµ, Pµ, xµ, wµ) 7−→ (zµ, Pµ, xµ, qµ) using the generator function:

F (y, P, x, q) = y · P + x · q +
m2

1 −m2
2

2P 2
P · x. (14)

The new variables zµ and qµ are related with the original ones as follows:

wµ =
∂F

∂xµ
= qµ +

m2
1 −m2

2

2P 2
Pµ, zµ =

∂F

∂Pµ
= yµ +

m2
1 −m2

2

2P 2

(
xµ − 2

P · x
P 2

Pµ
)
, (15)

whereas the variables xµ and Pµ remain unchanged. In terms of new variables the mass–
shell constraint takes the form:

φ =
1
4
P 2 − 1

2
(m2

1 + m2
2) +

(m2
1 −m2

2)
2

4P 2
+ u2 − α(P 2 − (m1 − κm2)2)

ηP · x
= 0, (16)

where

uµ ≡ P νΞνµ/P · x, Ξµν = xµqν − xνqµ; u · P ≡ 0. (17)

Let us define the relativistic analog of the Runge-Lentz vector as follows:

Rµ = Πν
µ

(
uλΞλν +

α(P 2 − (m1 − κm2)2)
2ηP · x

xν

)
, (18)

where Πν
µ ≡ δν

µ − PµP ν/P 2. It is easy to examine that Rµ is the integral of motion, i.e.,

[Rµ, φ] ≈ 0, [Rµ, x2] = 0 (19)

and satisfies the relations:

[Rµ, Pν ] = 0, [Rµ, Jλσ] = −ηµλRσ + ηµσRλ, (20)

[Rµ, Rν ] ≈
(1
4
P 2 − 1

2
(m2

1 + m2
2) +

(m2
1 −m2

2)
2

4P 2

)
Πλ

µΠσ
νJλσ, (21)

where the Dirac’s symbol ≈ denotes week equality.
The relations (20)–(21) are similar to those obtained for the Runge-Lentz vector of

simple relativistic Coulomb model and discussed in ref.[1]. Here we note that these rela-
tions together with the relations (8) do not form algebra. The reason resides in essential
nonlinearity of r.h.s. of Eq.(21). Nevertheless, the given system really possesses internal
symmetries. In order to single out ones, let us reformulate the present time-asymmetrical
model in the framework of the well-known Bakamjian-Thomas (BT) model [6].
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4 The Description in Framework of the Bakamjian–
Thomas Model

The BT model is based on 12-dimensional phase space with canonical variables Qi, Pi,
ri, ki (i = 1, 2, 3) and correspondent Poisson brackets {..., ...}. The essential, i.e., internal
dynamics of the BT model is determined by the total mass of a system |P | = M(r,k)
being the integral of motion. In our case this scalar function of 3-vector arguments r,k
is determined implicitly by means of the mass-shell equation being the consequent of the
mass-shell constraint (16):

h(M)− k2 − 2g(M)/r = 0; (22)

here r ≡ |r| and

h(M) ≡ 1
4M2

(
M2 − (m1 + m2)2

)(
M2 − (m1 −m2)2

)
, (23)

g(M) ≡ α

2M

(
M2 − (m1 − κm2)2

)
. (24)

By virtue of Poincaré-invariance of the BT-description it is sufficiently to choose the
center-of-mass (CM) reference frame by putting P = 0, Q = 0. Then the energy of the
system P0 is M and other integrals of motion (7), (18) become as follows: R0 = 0, Ji0 =
0; Si ≡ 1

2εjk
i Jjk and Ri form the 3-vectors S = r× k and

R = k× S + g(M)r/r. (25)

Besides, the BT-description is supplemented by the relations of original covariant and
canonical variables. In the CM reference frame the covariant particle positions are the
following functions of the canonical variables [2,3]:

xa = (−)āεār + ηrk/M, a = 1, 2; ā ≡ 3− a, (26)

where

εa ≡
1
2

(
1 +

m2
a −m2

ā

M2

)
. (27)

Especially, the relative position vector x ≡ x1 − x2 = r.
The Poisson bracket relations for the internal angular momentum (spin) of the system S

and the Runge-Lentz vector R are similar to nonrelativistic ones for the Coulomb problem:

{Si, Sj} = εk
ijSk, {Ri, Sj} = εk

ijRk, {Ri, Rj} = −h(M)εk
ijSk. (28)

Indeed, when h(M) = 0, Eq.(28) are the relations for generators of the Euclidean group
E(3). In case h(M) 6= 0, the Si and the normalized R̂i ≡ Ri/

√
|h| generate the group

SO(4), when h(M) < 0, and the group SO(1, 3), when h(M) > 0. Taking into account
Eq.(23), one obtains the following cases for the algebras of internal symmetries:

so(4) for |m1 −m2| < M < m1 + m2,
e(3) for M = |m1 −m2| and M = m1 + m2,
so(1, 3) for 0 < M < |m1 −m2| and M > m1 + m2.
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5 Relative and Particle Trajectories Without Integration

The existence of the Runge-Lentz vector makes it possible to obtain both the relative and
particle trajectories traced by vectors r and xa, respectively, without integration. First we
note that these trajectories are flat curves placed on the plane orthogonal to the spin of the
system, i.e., r · S = xa·S = 0. The R lies on the same plane, i.e., R · S = 0. Multiplying
Eq.(25) by r, one can obtain the relation:

R · r = S2 + gr, (29)

where S = |S|. Let ϕ be the angle between R and r, i.e., R · r = Rr cos ϕ , where R ≡ |R|
can be calculated by squaring Eq.(25):

R2 = hS2 + g2. (30)

Now using Eqs.(23), (24) and (30), Eq.(29) can be reduced to the canonical equation of a
conic section

p/r = e cos ϕ− sgng (31)

with the parameter p and the eccentricity e written down as follows:

p =
S2

|g|
=

2MS2

|α||M2 − (m1 − κm2)2|
, e =

R

|g|
=

√
1 +

S2

α2

M2 − (m1 + κm2)2

M2 − (m1 − κm2)2
. (32)

The looking for equations of particle trajectories is a more complicated task. Let us
define the vectors:

ra ≡ xa − δaR, (33)

where δa are some functions of integrals of motion. Taking into account Eqs.(25)–(26),
one can obtain the relations:

R · ra = (−)āgYa − δaR
2 + (−)āεāS

2, (34)

r2
a = Y 2

a − 2(−)āδagYa + δ2
aR

2 − 2(−)āδaεāS
2 + S2/M2. (35)

We note that all the quantities in r.h.s. of Eqs.(34)–(35) except the

Ya ≡ εār + (−)āηr · k/M (36)

are constants of motion. Let us require for the square polynomials in r.h.s. of Eq.(35) to
be linear binomials squared. Then the relevant discriminants must vanish:

Da = −4S2(hδ2
a − 2(−)āεāδa + 1/M2) = 0. (37)

The treatment of the conditions (37) as the square equations for δa and the choice of its
solutions with less absolute values give the following expressions:

δa =
2(−)ā

(M + mā)2 −m2
a

. (38)
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Just now Eq.(35) can be put into the equivalent form:

ra ≡ |ra| = Ya − (−)āδag. (39)

Eliminating the Ya from r.h.s. of Eqs.(34), (39), one can obtain the relations:

(−)āR · ra = gra +
mā

M
S2, (40)

which are similar to Eq.(29) and hence can be put into the form:

pa/ra = e cos ϕa − sgng, (41)

where ϕa are the angles between (−)āR and ra. The equations (41) describe the particle
trajectories being conic sections of the same shapes as the relative trajectory, i.e., with the
same eccentricity e (32) but with another parameters pa = mā

M p. The foci of these conic
sections are shifted with respect to the center of mass by vectors δaR. On the contrary,
the nonrelativistic particle trajectories have a common focus which is located in the center
of mass.

Conclusion

The idea that internal symmetries are typical of nonrelativistic mechanics only is wide-
spread among physicists. Indeed, the perihelion advance appears in the relativistic gravi-
tational problem as well as the quantum electromagnetic theory forecasts splitting of the
spectrum for a hydrogen atom. These facts indicate indirectly the absence of internal
symmetries for such interactions. The scalar-vector interaction does not occur in nature
purely but can contribute to some effective potentials such as quark-antiquark ones. Thus,
the model proposed in the present work could be useful for description of hadrons, and
internal symmetries may simplify the constructing of an approximation scheme on the
quantum level.
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