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Abstract
Fundamental solutions (FS) with a given boundary condition on the characteristics of
relativistic problems with axial symmetry are considered. This is so-called the Goursat
problem (GP) or zero plane formalism in Dirac’s terminology, or modification of the
proper time method in the Fock-Nambu-Schwinger formalism (FNS).

Closed FS for the Volkov problem from the point of view of GP can be found.
This means that integration over proper time in a FNS integral transformation can
be performed. Using the special chosen dynamic symmetry of the initial state, FS for
a particle in constant magnetic or constant electric field may also be calculated.

Introduction

In mathematical physics the GP is formulated for a 1-D hyperbolic equation if boundary
conditions on the characteristics ξ = ct − z = const, η = ct + z = const are given [1–3].
The FS of GP are called Riemann functions [1, 2]. For example, for the 1-D wave equation
(WE) with a positive parameter a2(

− 1
c2
∂2

∂t2
+

∂2

∂z2
− a2

)
ψ(z, t) =

(
4
∂2

∂ξ∂η
+ a2

)
ψ = 0 (1)

the Riemann function is [1]

GR = J0(
√

(c2t2 − z2)a2) = J0(
√
ξηa2) (2)

where J0 is the Bessel function of the first kind of order zero. If the parameter a2 is an
elliptic n-D operator then WE (1) is transformed into (n+ 1)-D WE. Let

a2 = k2
0 −∆⊥ (3)

where k0 =
mc

h̄
is the inverse Compton length of a relativistic particle, and ∆⊥ =

∂2

∂x2
1

+

∂2

∂x2
2

is the 2-D Laplace operator then WE (1) becomes the Klein-Fock equation with the

corresponding Riemann function [4]

GR = J0

(√
ξη(k2

0 −∆⊥)
)
| i > (4)
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where | i > is a boundary value of the Riemann function on the characteristics ξ = 0,
η = 0. Let the ket-vector | i > be the 2-D delta-function

| i >= δ(x1, x2) =
1

4π2

∫
exp{i(k1x1 + k2x2)}dk1dk2 =

1
2π

∞∫
0

J0(kx⊥)kdk (5)

where x⊥ =
√
x2

1 + x2
2 and the value ξη = c2t2 − z2 ≥ 0, which is a time-like interval of

the Minkowski space M2
+, then substitution of Eq.(5) into Eq.(4) gives

GR = G
(+)
R =

1
4π2

∫
exp{i(k1x1 + k2x2)}J0

(√
ξη(k2

0 + k2
⊥)
)
dk1dk2 =

1
2π

(
δ(
√
ξη − x⊥)
x⊥

− k0Θ(
√
ξη − x⊥)

J1(k0λ)
λ

)
(6)

where the notations are introduced:

k⊥ =
√
k2

1 + k2
2, (7)

Θ(z) is the Heaviside function, and λ =
√
c2t2 − z2 − x2

⊥ =
√
c2t2 − r2 =

√
ξη − x2

⊥ is a
time-like interval of the Minkowski space M4

+. Taking into account properties of the delta
function

δ(
√
ξη − x⊥)
x⊥

=
δ(| t | −r/c)

cr
= 2δ(λ2) (9)

and
Θ(
√
ξη − x⊥) = Θ(| t | −r/c) = Θ(λ2), (10)

we obtain a relativistically invariant representation of the Riemann function G(+)
R

G
(+)
R =

1
π

(
δ(λ2)− k0

2
Θ(λ2)

J1(k0λ)
λ

)
. (11)

The problem, which does not take place for the 1-D WE, arises for the n-D WE (where
n > 1). We rewrite the formula (4) in the form [4]

GR = J0(
√
−ξη(∆⊥ − k2

0)) | i > (12)

where −ξη = z2 − c2t2 ≥ 0 is a space-like interval of the Minkowski space M2
−. It should

be noted that the ket-vector | i > in (12) cannot be a localized delta function because
in this case the operator J0 → I0 (where I0 is a modified Bessel function which increases
exponentially). For this reason the ket-vector | i > in Eq.(12) has the form

| i >=
1
2π

∞∫
k0

K0(kx⊥)kdk = k0
K1(k0x⊥)

2πx⊥
(13)

where K0,K1 are the MacDonald functions which are eigenfunctions of an elliptic operator
∆⊥

∆⊥K0(kx⊥) = k2K0(kx⊥). (14)
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Substituting (13) into Eq.(12), we obtain a Riemann function in the space-like M2
− ⊂M4

−

GR = G
(−)
R =

1
2π

∞∫
k0

J0

(√
−ξη(k2 − k2

0)
)
K0(kx⊥)kdk =

k0K1(k0λ̃)
2πλ̃

(15)

where λ̃ =
√
−ξη + x2

⊥ =
√
r2 − c2t2 is a space-like interval of the space M4

−.

The linear combination of Riemann functions G(±)
R coincides with the causal function

∆c, but the latter contains the Bessel function of the second kind N1(k0λ) which is needed
to satisfy the radiation condition.

The aim of our paper is to construct Riemann functions for the Klein-Fock equation
with electromagnetic interaction preserving the axial symmetry.

1 Riemann function for the Volkov problem

Let us consider the Klein-Fock equation which describes the behaviour of a relativistic
particle in a plane electromagnetic wave with the potential

Aµ = A⊥µ = (A1, A2, 0, 0) (1.1)

where Ai = Ai(ξ) = Ai(ct−z) (i = 1, 2). This is the so-called Volkov problem. A Riemann
function of the Volkov problem is

G
(+)
R =

∫
eikixiJ0

√ξη(k2
0 + k2

i +
2e
h̄c

< Ai > ki +
e2

h̄2c2
< A2

i >

 dk1dk2

4π2
(1.2)

where < Ai >= 1
ξ

ξ∫
0
Ai(z)dz. To perform the integration in Eq.(1.2), we shall make a shift

of the momentum
ki +

e

h̄c
< Ai >= qi (1.3)

which eliminates the linear electromagnetic term, and Eq.(1.2) has the form (see the
relation (6))

G
(+)
R = exp

{
− ie
h̄c

< Ai > xi

} ∞∫
0

J0(qx⊥)J0(
√
ξη(q2 + k2(ξ))

qdq

2π
=

1
2π

exp{−ie
h̄c

< Ai > xi}
(
δ(
√
ξη − x⊥)
x⊥

− k(ξ)Θ(
√
ξη − x⊥)J1(k(ξ)λ)

λ

)
(1.4)

where k(ξ) = k0

√
1 +

e2

h̄2c2
(< A2

i > − < A >2). From the FS of the Volkov problem it

follows that in the presence of the wave the proper mass of the particle increases.
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2 Riemann functions for a particle in constant
uniform magnetic or electric field

The constant and uniform magnetic field H may be described by the vector potential

A⊥µ = (A1, A2, 0, 0), A1 = −Hx2

2
, A2 =

Hx1

2
(2.1)

and the Riemann function of GP is

G
(+)
R = J0

(√
ξη(k2

0 −DT 2

µ )
)
| i >, (2.2)

where
DT

µ = ∂T
µ +

ie

h̄c
AT

µ . (2.3)

For the sake of simplicity we take the boundary condition for | i > in the form

| i >=

√
h̄c

eH
exp

{
−αx

2
⊥

2

}
Ln(αx2

⊥) (2.4)

where α =
eH

2h̄c
, and Ln(z) is the Laguerre polynomial.

Substituting Eq.(2.5) into Eq.(2.2), we obtain

G
(+)
R = exp

{
−αx

2
⊥

2

}∑
n

J0

(√
ξηk2

0

(
1 +

H

H0
(2n+ 1)

))
Ln(αx2

⊥) (2.5)

where H0 =
m2c3

eh̄
. Using the asymptotics of a Laguerre polynomial with large n

exp

{
−αx

2
⊥

2

}
Ln(αx2

⊥) ' J0(
√

4αnx⊥) (2.6)

one can carry out approximate summation into (2.5) according to the rule [6]

4αn→ q2,
∑
n

→
∞∫
0

qdq (2.7)

and then (see the relation (6))

G
(+)
R '

∞∫
0

J0

(√
ξη(q2 + k2(H))

)
J0(qx⊥)

qdq

2π
=

1
2π

[
δ(
√
ξη − x⊥)
x⊥

− k(H)Θ
(√

ξη − x⊥
) J1(k(H)λ)

λ

]
(2.8)

where k(H) = k0

√
1 + H

H0
. Thus, in a constant magnetic field, the proper mass of the

particle increases by
√

1 + H
H0

times.
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Next we consider the Riemann function for a moving particle in the constant electric
field E defined by the vector potential

Aµ = (0, 0, A3, iA0), A3 = −ctE
2
, A0 = −Ez

2
. (2.9)

For a constant electric field there are two types of solutions which differ by a charge sign,
and the Riemann function may be constructed from these partial solutions [4]

GR = G
(−)
R =

∑
n

exp

{
± ieE(z2 − c2t2)

4h̄c

}
Ln

(
∓ ieE

2h̄c
(z2 − c2t2)

)
K0(knx⊥), (2.10)

where

kn = k0

√
1± iE

E0
(2n+ 1), E0 = H0. (2.11)

If we use the Laguerre polynomial asymptotics for large n again, then approximate sum-
mation may also be performed in (2.11) (see the relation (15))

G
(−)
R '

∞∫
k(e)

J0

(√
−ξη(k2

⊥ − k2(E))
)
K0(k⊥x⊥)

k⊥dk⊥
2π

= k(E)
K1(k(E)λ̃)

2πλ̃
, (2.13)

where

k(E) = k0

√
1± iE

E0
=
mc

h̄

√
1± iE

E0
. (2.12)

In a constant electric field the stable Riemann function exists in the space-like M2
− ⊂M4

−
and the proper mass of the particle gets a small imaginary addition. It is possible, because
for the constant electric field as distinct from the field of a plane electromagnetic wave
and constant magnetic field has the ability to create pairs.

In conclusion we note that the new classification of the FS of WE from the point of
view of the GP makes possible investigating solution singularities. Namely, if the boundary
state | i > is localized, then a Riemann function exists inside the light sector (cone). And
if the boundary state | i > is nonlocalized, then the Riemann function exists outside the
light sector (cone).
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