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Abstract

By means of splitting subgroups of the generalized Poincaré group P(1, 4), ansatzes
which reduce the eikonal equation to differential equations with fewer independent
variables have been constructed. The corresponding symmetry reduction has been
done. By means of the solutions of the reduced equations some classes of exact solu-
tions of the investigated equation have been presented.

The relativistic eikonal (the relativistic Hamilton-Jacobi) equation is fundamental in the-
oretical and mathematical physics. Here we consider the equation
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In [ 1 ] it has been shown that the maximal local (in sense of Lie) invariance group of the
equation (1) is the conformal group C(1, 4) of the 5-dimensional Poincaré-Minkowski
space with the metric

s2 = xAxA ≡ gABxAxB = x2
0 − x2

1 − x2
2 − x2

3 − u2,

where A, B = 0, 1, . . . , 4; x4 ≡ u; gAB = gAB = {1,−1,−1,−1,−1}δAB, δAB is the
Kronecker delta. By means of special ansatzes multiparameter families of exact solutions
of the eikonal equation were constructed [ 1–4 ].

It is well-known that the conformal group C(1, 4) contains the generalized Poincaré
group P(1, 4) as a subgroup. The group P(1, 4) is a group of rotations and translations
of the 5-dimensional Poincaré-Minkowski space. For investigation of the equation (1)
we have used splitting subgroups [ 5–7 ] of the group P(1, 4). Using invariants [ 8 ] of
splitting subgroups of the group P(1, 4), we have constructed ansatzes which reduce the
equation (1) to differential equations with fewer independent variables. The corresponding
symmetry reduction has been done. Using the solutions of the reduced equations, we have
found some classes of exact solutions of the eikonal equation.

1. Below we present ansatzes which reduce the equation (1) to ordinary differential
equations (ODE), and we list the ODEs obtained as well as some solutions of the eikonal
equation.
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1. u = ϕ(ω), ω = x3; (ϕ′)2 = −1; u = ıεx3 + C, ε = ±1.

2. u = ϕ(ω), ω = x2
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2; (ϕ′)2 ω = −1/4; u = ıε
(
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4. u2 = −ϕ(ω) + x2
0, ω = x3; (ϕ′)2 − 4ϕ = 0; u2 = − (εx3 + C)2 + x2

0, ε = ±1.

5. u2 = ϕ(ω)− x2
3, ω = x0; (ϕ′)2 − 4ϕ = 0; u2 = (εx0 + C)2 − x2

3, ε = ±1.
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[
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7. u2 = ϕ(ω) + x2
0 − x2

3, ω = x2; (ϕ′)2 + 4ϕ = 0; u2 = (ıεx2 + C)2 + x2
0 − x2

3, ε = ±1.

8. u = ϕ(ω)− x0, ω = x2; ϕ′ = 0;

9. u = ε (ϕ(ω)− x0) , ω = x2
1 + x2

2; ϕ′ = 0; ε = ±1.

10. u = ε (ϕ(ω)− x0) , ω = x3; ϕ′ = 0; ε = ±1.

11. u = ε (ϕ(ω)− x0) , ω = x2
1 + x2

2 + x2
3; ϕ′ = 0; ε = ±1.

The ansatzes (8)–(11) reduce the equation (1) to the linear ODEs. The ansatzes (1)–
(11) can be written in the following form:

h(u) = f(x) · ϕ(ω) + g(x), (2)

where h(x), f(x), g(x) are given functions, ϕ(ω) is an unknown function. ω = ω(x)
are one-dimensional invariants of splitting subgroups of the group P(1, 4).

12. 2x0ω = −ϕ(ω) + x2
3, ω = x0 + u; ωϕ′ − ϕ + ω2 = 0;

2x0 (x0 + u) = ((x0 + u)− C) (x0 + u) + x2
3;

13. 2x0ω = −ϕ(ω) + x2
1 + x2

2 + x2
3, ω = x0 + u; ωϕ′ − ϕ + ω2 = 0;

2x0 (x0 + u) = ((x0 + u)− C) (x0 + u) + x2
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3;

14. 2x0ω = −ϕ(ω) + x2
1 + x2

2, ω = x0 + u; ωϕ′ − ϕ + ω2 = 0;
2x0 (x0 + u) = ((x0 + u)− C) (x0 + u) + x2

1 + x2
2;

The ansatzes (12)–(14) reduce the equation (1) to the linear ODEs. The ansatzes
(12)–(14) can be written in the following form:

h(ω, x) = f(x) · ϕ(ω) + g(x), (3)

where h(ω, x), f(x), g(x) are given functions, ϕ(ω) is an unknown function. ω = ω(x)
are one-dimensional invariants of the splitting subgroups of the group P(1, 4).
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2. Next we present ansatzes which reduce the equation (1) to two-dimensional partial
differential equations (PDE) and we list the PDEs obtained.

1. u = ϕ(ω1, ω2), ω1 =
(
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2

)1/2
, ω2 = x3; ϕ2

1 + ϕ2
2 = −1, ϕi ≡
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2. u = ϕ(ω1, ω2), ω1 = x0, ω2 = x3; ϕ2
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2 = 1.

3. u = ϕ(ω1, ω2), ω1 = x0; ω2 =
(
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2 = 1.

4. u = ϕ(ω1, ω2), ω1 = x0; ω2 =
(
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2 = 1.

5. u = ϕ(ω1, ω2), ω1 = x0; ω2 = x3, ϕ2
1 − ϕ2

2 = 1.

6. u2 = −ϕ(ω1, ω2) + x2
0, ω1 =

(
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7. u2 = ϕ(ω1, ω2) + x2
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The ansatzes (1)–(8) can be written in the form (2), where ω = (ω1(x), ω2(x)) are
two-dimensional invariants of the splitting subgroups of the group P(1, 4).

9. 2x0ω1 = −ϕ(ω1, ω2) + x2
3, ω1 = x0 + u, ω2 = x2; 4ω1ϕ1 − ϕ2
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The ansatzes (9)–(14) can be written in the form (3), where ω = (ω1(x, u), ω2(x, u))
are two-dimensional invariants of the splitting subgroups of the group P(1, 4).
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