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Abstract

Generators of multiparameter deformations Uq;s1,s2,...,sn−1(gln) of the universal en-
veloping algebra U(gln) are realized bilinearly by means of an appropriately gene-
ralized form of anyonic oscillators (AOs). This modification takes into account the
parameters s1, ..., sn−1 and yields usual AOs when all the si are set equal to unity.

1. Various aspects of quantum groups and quantum (or q-deformed) algebras [1, 2] remain
to be a subject of intensive study. Recently, it was shown by Lerda and Sciuto [3] that
the q-algebra Uq(su2) admits a realization in terms of two modes of so-called anyonic
oscillators-certain nonlocal objects defined on a two-dimensional square lattice. Shortly
after, this result was extended in [4]–[5] to the case of higher rank algebras Uq(sln) and,
moreover, to the q-analogs of all semisimple Lie algebras from the classical series Ar, Br,
Cr, and Dr.

During last few years, multiparameter (and two-parameter, in particular) deformations
of GLn groups and of the algebras U(gln), U(sln) were developed [6]–[11]. Accordingly,
it is of interest to explore the possibility of constructing an analogs of anyonic realization
for those multiparametric-deformed algebras. As a step in this direction, Matheus-Valle
and R-Monteiro [12] have presented a kind of anyonic construction for the two parametric-
deformed algebra Up,q(sl2).

The subject of our consideration (just in the context of ’anyonic’ realizations) will
be a class of multiparameter deformations Uq;s1,s2,...,sn−1(gln) of the universal enveloping
algebras U(gln) which are generated by the elements 1, Ijj+1, Ij+1j , j = 1, 2, ..., n− 1,
and Iii, i = 1, 2, ..., n, and are defined by the relations

[Iii , Ijj ] = 0,

[Iii , Ijj+1] = δijIij+1 − δij+1Iji,

[Iii , Ij+1j ] = δij+1Iij − δijIj+1i, (1)
[Iii+1, Ijj+1] = [Ii+1i, Ij+1j ] = 0 for |i− j| ≥ 2,

[Iii+1, Ij+1j ] = δij
(siq)Ii+1,i+1(s−1

i q)−Iii − (siq)Iii(s−1
i q)−Ii+1,i+1

s−1
i q − (siq)−1

,
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together with the trilinear (or multiparameter generalization of q-Serre) relations

[ [Ii,i+1, Ii+1,i+2](si+1q), Ii,i+1]
(s−1

i+1q)
= 0,

[ [Ii+1,i+2, Ii,i+1](s−1
i+1q), Ii+1,i+2]

(si+1q)
= 0,

[ [Ii+1,i, Ii+2,i+1](s−1
i q), Ii+1,i]

(siq)
= 0,

[ [Ii+2,i+1, Ii+1,i](siq)
, Ii+2,i+1]

(s−1
i q)

= 0.

(2)

Here the notation [X, Y ]r ≡ XY − r Y X for a deformed commutator is adopted. With
comultiplication rules

∆(Ikk) = Ikk ⊗ 1 + 1⊗ Ikk,

∆(Ik,k+1) = Ik,k+1 ⊗ (s−1
k q)−Ikk q(Ikk+Ik+1,k+1)/2+

(sk q)Ikk q−(Ikk+Ik+1,k+1)/2 ⊗ Ik,k+1,

∆(Ik+1,k) = Ik+1,k ⊗ (sk q)Ik+1,k+1 q−(Ikk+Ik+1,k+1)/2+

(s−1
k q)−Ik+1,k+1 q(Ikk+Ik+1,k+1)/2 ⊗ Ik+1,k,

(3)

and the counit structure

ε(1) = 1, ε(Ikk) = ε(Ik,k+1) = ε(Ik+1,k) = 0, (4)

the considered algebra becomes a bialgebra. In the restricted case characterized by

s1 = s2 = ... = sn−1 = s, (5)

the algebra Uq;s1,s2,...,sn−1(gln) reduces to the two-parameter deformation Uq,s(gln) given
by Takeuchi [9]. If in addition the restriction s=1 is imposed, the standard q-deformation
of Drinfeld–Jimbo [1, 2] is recovered. Conversely, the algebra under consideration with
defining relations (1)–(4) can be generated from the standard Uq(gln) by applying the
procedure described in [10] (see also [11]).

Below, we will present a realization of these multiparametric-deformed algebras
Uq;s1,s2,...,sn−1(gln), as defined in relations (1)–(4), by means of a definite set of n modified
anyonic oscillators (or ’quasi-anyons’, i.e., an appropriate generalization of anyons used in
[3]–[5]).

2. Let us begin with some preliminaries concerning (d = 2) a lattice angle function,
disorder operator, and anyonic oscillators (see [3]–[5]). Let Ω be a two-dimensional square
lattice with the spacing a = 1. On this lattice, we consider a set of N species (sorts) of
fermions ci(x), i = 1, ..., N , x ∈ Ω, which satisfy the following standard anticommutation
relations:

{ci(x), cj(y)} = {c†i (x), c†j(y)} = 0, (6)

{ci(x), c†j(y)} = δij δ(x,y). (7)

Here δ(x,y) is nothing but the conventional lattice δ-function: δ(x,y) = 1 if x = y and
vanishes if x 6= y.
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We use the same definition as in [3]–[5] of the lattice angle functions Θγx(x,y) and
Θδx(x,y) that correspond to the two opposite types of cuts (γ-type and δ-type), and the
same definition of ordering (x > y, x < y). The corresponding two types of disorder
operators Ki(xγ), and Ki(xδ), i = 1, ..., N , are introduced as follows:

Kj(xγ) = exp

(
iν
∑

y 6=x
Θγx(x,y) c†j(y)cj(y)

)
,

Kj(xδ) = exp

(
iν
∑

y 6=x
Θδx(x,y) c†j(y)cj(y)

)
.

(8)

The number ν that appears here is usually called the statistics parameter.
The anyonic oscillators (AOs) ai(xγ) and ai(xδ), i = 1, ..., N , are defined [3] as

ai(xγ) = Ki(xγ) ci(x), ai(xδ) = Ki(xδ) ci(x) (9)

(no summation over i). One can show that these AOs satisfy the following relations of
permutation. For i 6= j and arbitrary x,y ∈ Ω,

{ai(xγ), aj(yγ)} = {ai(xγ), a†j(yγ)} = 0. (10)

Let q = exp(iπν). For i = j and for two distinct sites (i.e., x 6= y) on the lattice Ω, one
has

ai(xγ)ai(yγ) + q−sgn(x−y)ai(yγ)ai(xγ) = 0, (11)

ai(xγ)a†i (yγ) + qsgn(x−y) a†i (yγ)ai(xγ) = 0, (12)

whereas on the same site

(ai(xγ) )2 = 0, {ai(xγ), a†i (xγ)} = 1. (13)

The analogs of relations (10)–(13) for anyonic oscillators of the opposite type δ are obtained
from (10)–(13) by replacing γ → δ and q → q−1.

Note that it is the pair of relations (11), (12) (their analogs for the δ-type of cut,
and Hermitian conjugates of all them) which the statistics parameter ν does enter. In
comparison with ordinary fermions, the basic feature of anyons is their nonlocality (the
attributed cut) and their braiding property specific of d = 2 and given by eq. (11), (12).
These latters imply that anyons of the same sort, even allocated at different sites of the
lattice, nevertheless ’feel’ each other due to the factor expressed by the parameter q (or
ν).

Finally, the commutation relations for anyons of opposite types of nonlocality, i.e., of
γ-type and δ-type, are to be exhibited (x, y arbitrary):

{ai(xγ), aj(yδ)} = 0, (14)

{ai(xγ), a†j(yδ)} = 0, (15)

{ai(xγ), a†j(xδ)} = δij q

[∑
y<x

−
∑
y>x

]
c†i (y)ci(y)

, (16)
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as well as the relations that result from all these (i.e., (10)–(16)) by applying Hermitian
conjugation.

As proven in [4]–[5], the set of N anyons defined in (9) through the formulae

E+
j ≡ Ij,j+1 =

∑
x∈Ω

Ij,j+1(x), E−
j ≡ Ij+1,j =

∑
x∈Ω

Ij+1,j(x),

Hj ≡ Ijj − Ij+1,j+1 =
∑

x∈Ω
{Ijj(x)− Ij+1,j+1(x)},

where

Ij,j+1(x) = a†j(xγ)aj+1(xγ), Ij+1,j(x) = a†j+1(xδ)aj(xδ),

Ijj(x) = a†j(xα)aj(xα) = Nj(x)

(here α is γ or δ; Nj = c†jcj), supplies a (bilinear) realization of the Uq(slN ) algebra.

3. To realize analogously the algebra Uq;s1,s2,...,sn−1(gln), we have to use a modified (with
respect to standard definition (9) and to the relations (11)–(16)) definition of transmuted
(from the fermionic prototypes (6)–(7)) oscillators, namely

Ak(xγ) = exp

(
iν
∑

y 6=x
Θγx(x,y)Nk(y)

)
k−1∏
j=1

s

∑
y

Nj(y)

j ck(x),

Ak(xδ) =
n−1∏
j=k

s

∑
y

Nj+1(y)

j exp

(
iν
∑

y 6=x
Θδx(x,y)Nk(y)

)
ck(x).

(17)

We’ll call them the ”quasi-anyonic” operators, since under restrictions (5) and s=1 they
turn into usual anyonic ones, see eq. (9). Below, let sj = exp(iπρj).

By direct examination, one verifies the following. For the coinciding modes of the
operators Ai(xα) and the same cuts, the relations of commutation remain the same as
those in eqs. (11)–(13). For those with opposite cuts (γ and δ) and at coinciding modes,
one has

{Ak(xγ), A†
k(xδ)} = q

∑
y 6=x

sgn(x−y)Nk(y) k−1∏
j=1

s

∑
y

Nj(y)

j

n−1∏
j′=k

s

−
∑
y

Nj′+1(y)

j′ . (18)

For different modes and the same cut γ, we obtain

Ai(xγ)Aj(yγ) + s
−sgn(i−j)
j Aj(yγ)Ai(xγ) = 0,

Ai(xγ)A†
j(yγ) + s

sgn(i−j)
j A†

j(yγ)Ai(xγ) = 0,
(19)

while for the same cut δ we have

Ai(xδ)Aj(yδ) + s
sgn(i−j)
i−1 Aj(yδ)Ai(xδ) = 0,

Ai(xδ)A
†
j(yδ) + s

−sgn(i−j)
i−1 A†

j(yδ)Ai(xδ) = 0.
(20)

Finally, for opposite cuts, the relations of permutation are, for ∀x, y,

{Ai(xγ), Aj(yδ)} = 0, i ≤ j, {Ai(xγ), A†
j(yδ)} = 0, i < j, (21)
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and, again for arbitrary x, y ,

Ai(xγ)Aj(yδ) + s−1
j si−1Aj(yδ)Ai(xγ) = 0, i > j, (22)

Ai(xγ)A†
j(yδ) + sjs

−1
i−1A

†
j(yδ)Ai(xγ) = 0, i > j. (23)

To the considered relations for quasianyons, also their Hermitian counterparts are to be
added. It is obvious that at s1 = s2 = .. = sn−1 = 1 all the relations of permutation for
the quasianyonic operators Ai(xα) go over into those for usual anyons.

It can be shown by direct verification that the following assertion is true.

Proposition. The generators Ijj+1, Ij+1j , j = 1, 2, ..., n−1, and Iii, i = 1, 2, ..., n, realized
in the form

Ik,k+1 =
∑
x∈Ω

Ik,k+1(x), Ik+1,k =
∑
x∈Ω

Ik+1,k(x), Ikk =
∑
x∈Ω

Ikk(x),

with local densities taken as

Ik,k+1(x) = A†
k(xγ)Ak+1(xγ), Ik+1,k(x) = A†

k+1(xδ)Ak(xδ),

Ikk(x) = A†
k(xα)Ak(xα) = Nk(x),

close into the (global bi-)algebra Uq;s1,s2,...,sn−1(gln) defined by the relations (1)–(4).

4. Let us make some concluding remarks. The formulas presented in previous section
describe the set of generalized ’anyons’, or quasi-anyons, which possess maximum of possi-
ble inter-mode dependences. Not only the coinciding modes of our quasi-anyons feel each
other (with braiding characterized by the q) at distinct sites of the lattice (this property
reproduces that of usual anyons, see eqns. (11)–(12) and their conjugates) but moreover,
as exhibit relations (19)–(23), the quasi-anyons participate in graded braiding relations
that depend on the values of indices, thus realizing a kind of ordering within the set of
quasi-anyonic species.

The system of quasi-anyons given by eq. (17) differs from the modified anyons used
in [12], as shows direct comparison at n = 2. Multimode anyon-like deformed oscillators
proposed in refs. [7], [13] (although being not nonlocal objects and not tied to a spe-
cific dimension) resemble our quasi-anyons of Section 3, and it is useful to analyze the
(dis)similarities in more detail. Finally, there is an interesting issue concerning the alter-
native: to attribute the (sj-dependent) modifying factors in eq. (17) either to a change of
a disorder operator (e.g., in the spirit of ref.[14]), or to a (multiparameter) deformation of
the multimode fermionic oscillator.
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