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Abstract

The reduction by symmetry of the linear system of the self-dual Yang-Mills equations
in four-dimensions under representatives of the conjugacy classes of subgroups of the
connected part to the identity of the corresponding Euclidean group under itself is
carried out. Only subgroups leading to systems of differential equations nonequivalent
to conditions of zero curvature without parameter, or to systems of uncoupled first
order linear O.D.E.’s are considered. Lax pairs for a modified form of the Nahm’s
equations as well as for systems of partial differential equations in two and three
dimensions are written out.

1 Introduction

Several systems of partial differential equations have been investigated in the past via the
method of symmetry reduction (see Refs. [1–3], and references therein). This includes the
(coupled) Yang-Mills theories [4–9], and in particular the self-dual Yang-Mills (abbreviated
SDYM below) equations in flat spaces. In four dimensions, the latter equations are known
to be completely solvable through the twistor construction [10, 11]. Their reductions
under symmetries, with often the addition of algebraic constraints, have produced a large
number of known integrable systems in lower dimensions (for details, see Refs. [12] and
[13]), such as: the Nahm [14–16], Boussinesq [17–19], (modified) Korteweg-de Vries [17–
19, 20, 21], (generalized) nonlinear Schrödinger [19–21], N-wave [22] and Kadomtsev–
Petviashvili [22] equations. Most of these reductions have been accomplished using only
translations, and their hierarchies have been examined through the same reductions in
Ref. [23]. Moreover, symmetry reductions using different invariant fields, or ansatze, have
been effected for higher dimensional versions of the SDYM equations [24–26] as well as for
some generalizations to self-dual spaces [27].

The corresponding linear system, or Lax pair [10,11,28,29], to the SDYM equations has
also been reduced with respect to translations as well as other two- and three-dimensional
Abelian subgroups of the conformal group [30–32]. As expected, the compatibility of the
reduced Lax pair led to the SDYM equations reduced under the same symmetry group.
Let us mention that the six trancendents of Painlevé were found in Ref. [32] as the result
of reductions with respect to three-dimensional Abelian subgroups, which have also been
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derived through further reductions of reduced systems of the SDYM equations (see Ref.
[13]). The symmetries involved consisted of translations, rotations, and dilatations. In
particular, the nontrivial reduction of the Lax pair for the SDYM equations to the Lax
pair for the Painlevé equation PV I has been exhibited.

In the following, the symmetry reduction of the Lax pair of the SDYM equations with
respect to any subgroup of the conformal group is described. In our discussion, we will
restrict ourselves to the Euclidean version of the SDYM system, where preliminary re-
sults have been obtained [33]. This work can also be performed on R4 endowed with the
diagonal metric: (+1,+1,−1,−1) (R(2,2)) [34, 35]. Let us recall that the procedure of
symmetry reduction has been applied to generate new gauge invariant or supersymmetric
systems from higher dimensional ones. There is in general a residual gauge symmetry after
reduction, but no residual supersymmetry is ensured. Despite this result, supersymmetric
extensions of the SDYM equations in Euclidean space have been reduced by subgroups
of the Euclidean group (Ref. [36] and references therein) and supersymmetric versions of
known integrable systems have been produced. Similarly, some superintegrable systems,
such as the super-Korteweg-de Vries and super-Toda field equations, have been recovered
from the supersymmetric SDYM equations in R(2,2) with the help of differential constraints
[37]. As a further motivation to this work, let us mention that extended self-dual super-
symmetric Yang-Mills theories correspond to low energy limits of open or heterotic N = 2
superstring theories [38, 39].

In order to introduce our notation, we recall in section 2 the four-dimensional SDYM
equations as well as their corresponding linear system, or Lax pair, in Euclidean space (E4).
Then, the lift of the action of the conformal group SO(5, 1), which leaves invariant both
the SDYM equations and its Lax pair is found by reference to the twistor construction.
Section 3 reviews the invariance conditions for the different elements involved in the linear
system: i.e. the Yang-Mills fields and the multiplet of scalar fields (vector-functions),
transforming under the fundamental representation of the gauge group. A classification
of the subalgebras of the real Euclidean Lie algebra, e(4) ∼ so(4) . t4, of the Euclidean
group (E(4) ∼ O(4)×⊃ T 4), with respect to its connected part to the identity (Eo(4)) is
also indicated. We then describe an algorithm of symmetry reduction of the Lax pair for
the SDYM equations and provide explicit examples in section 4. The reduced Lax pairs
obtained through reductions under representatives of the conjugacy classes of subgroup
of Eo(4) giving rise to nontrivial nonlinear differential systems of reduced equations are
presented in section 5. We end this article with a summary of the results and some
comments regarding future directions of this work.

2 Self-Dual Yang-Mills Equations and Lax Pair

Let us write the SDYM equations in E4 to set our notation:

F = ∗F, (2.1)

where F is a curvature 2-form pulled back to E4 from the gauge bundle P (E4,H), explicitly
: F = dω + ω ∧ ω, with the connection 1-form ω on P taking values in the Lie algebra H
of the gauge group H.
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In terms of Cartesian coordinates {xµ}, they can be expressed as:

Fµν =
1
2
εµνκσFκσ, (2.2)

where µ, ν, ... = 1, ..., 4, εµνκσ stands for the completely antisymmetric tensor in four
dimensions with the convention: ε1234 = 1. The components of the field strength (Fµν)
are given by:

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]. (2.3)

The solutions to the SDYM equations on complexified Minkowski space (MC), or
self-dual connections on a vector bundle N over MC , are related in a one-to-one manner
to holomorphic vector bundles Ñ over CP 3∗, trivial over CP 1 submanifolds. The fibres
(Cn) of the bundle Ñ consist of covariantly constant sections Ψ of the bundle N on anti-
self-dual planes of MC corresponding to a point of CP 3∗, which are also called β-planes.
The condition of self-duality, or the self-dual equations, of the connections on MC is in
fact equivalent to the condition of covariant constancy of sections Ψ with respect to the
(self-dual) connection on the anti-self-dual planes in MC . The latter condition can be
interpreted as a Lax pair. By imposing a suitable antiholomorphic involution on CP 3∗, a
fibration CP 3∗ → S4 with “real lines” CP 1 is induced, hence CP 3∗ = CP 3∗(S4, CP 1). In
the same manner, the vector bundle over S4 is pulled back to a holomorphic vector bundle
over CP 3∗ if the self-duality condition on S4 is satisfied [10, 11, 40]. These constraints
correspond to a Lax pair and can be expressed as follows if we introduce a chart R4 of S4

with coordinates xµ:

[D1 + iD2 − λ(D3 + iD4)]Ψ(x, λ, λ̄) = 0, (2.4a)

[D3 − iD4 + λ(D1 − iD2)]Ψ(x, λ, λ̄) = 0, (2.4b)

∂λ̄Ψ(x, λ, λ̄) = 0, (2.4c)

where the covariant derivative: Dµ := ∂µ + Aµ and λ ∈ CP 1. The vector-function, or
multiplet of scalar fields, Ψ is a holomorphic section of the vector bundle Ñ over CP 3∗,
as expressed by (2.4c).

On the subset R4×R2 of CP 3∗, labelled by the coordinates (xµ, yi), i = 1, 2, one finds
that the vector parts of eqs (2.4):

∂1 + i∂2 − λ∂3 − iλ∂4, (2.5a)

λ∂1 − iλ∂2 + ∂3 − i∂4, (2.5b)

and
∂λ̄ =

1
2

(
∂

∂y1
+ i

∂

∂y2

)
, (2.5c)

define a basis of antiholomorphic vector fields with respect to the complex structures J
on CP 3∗:

J = {Jν
µ = −saδ

νρη̄a
ρµ, ε

j
i}, (2.6)

where the antisymmetric two-index tensor εji (i, j, ... = 1, 2) is normalized to unity (ε21 =
−1), sa (a, b, ... = 1, 2, 3) are the Cartesian coordinates on R3 such that sasa = 1, which
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parametrize the fibre CP 1 ' S2, and a chart of S2 with variables (y1, y2) where: λ =
y1 + iy2, has been chosen via a stereographic projection. Explicitly, we have:

s1 =
2y1

1 + |y|2
=

λ+ λ̄

1 + λλ̄
,

s2 =
2y2

1 + |y|2
=
i(λ̄− λ)
1 + λλ̄

,

s3 =
1− |y|2

1 + |y|2
=

1− λλ̄

1 + λλ̄
, (2.7)

where |y|2 = (y1)2 + (y2)2. The ’t Hooft tensor (ηa
µν) and its dual (η̄a

µν) are given by (see
Ref. [41] for identities):

ηa
bc = η̄a

bc = εabc, (2.8a)

where a, b, c = 1, 2, 3 and εabc is the three-dimensional antisymmetric tensor (ε123 = 1),

η̄a
b4 = −ηa

b4 = −δa
b , (2.8b)

ηa
µν = −ηa

νµ, (2.8c)

η̄a
µν = −η̄a

νµ. (2.8d)

The SDYM equations (2.2) and their linear system (2.4) are invariant under the gauge
transformations:

A′
µ = h−1Aµh+ h−1∂µh, (2.9a)

and
Ψ′ = h−1Ψ, (2.9b)

where h ∈ H is a function of x ∈ S4. These equations are also preserved by the global
action of the conformal group SO(5, 1). In order to preserve the holomorphic structure of
the bundle Ñ → CP 3∗, the action of SO(5, 1) is lifted to CP 3∗ in a holomorphic fashion
by requiring the complex structure (2.6) to be invariant with respect to a lifted action
of the conformal group. Locally, the lifted vector fields (X̃) will obey to the Lie algebra
so(5, 1) of SO(5, 1), and will correspond to infinitesimal automorphisms of the complex
structure (2.6), i.e. [42, 43]:

LX̃J = 0, (2.10)

∀X ∈ so(5, 1), where LX̃ denotes the Lie derivative with respect to X̃.
A specific representation of so(5, 1) can be realized in terms of vector fields (X̂) on E4

X̂a = −1
2
δabη

b
µνxµ∂ν , Ŷa = −1

2
δabη̄

b
µνxµ∂ν , P̂µ = ∂µ,

K̂µ =
1
2
xσxσ∂µ − xµD̂, D̂ = xσ∂σ, (2.11)

where {X̂a, a = 1, 2, 3} and {Ŷa, a = 1, 2, 3} are two commuting so(3) Lie algebras of so(4),
K̂µ denotes the generators of the special conformal transformations, and D̂ generates the
dilatations.
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One verifies that the lifted vector fields on R4 × CP 1 = CP 3∗\CP 1 can be expressed
as:

X̃a = X̂a, Ỹa = Ŷa − Za, P̃µ = P̂µ,

K̃µ = K̂µ + η̄a
σµxσZa, D̃ = D̂, (2.12)

with the generators {Za, a = 1, 2, 3} forming the SO(3) rotations on S2, or vector fields
∈ T (CP 1) such that:

Za = εabcsb∂c, (2.13)

which in terms of the parameter λ become:

Z1 =
i

2
[(λ2 − 1)∂λ + (1− λ̄2)∂λ̄],

Z2 =
1
2
[(1 + λ2)∂λ + (1 + λ̄2)∂λ̄],

Z3 = i(λ∂λ − λ̄∂λ̄). (2.14)

Let us restrict ourselves to the (real) Euclidean Lie algebra e(4) ∼ so(4) . t4, which
can be realized as an embedding in so(5, 1). We introduce the matrix I5,1, defined as:

I5,1 =



...
14

... 0

...
. . . . . . . . . . . . . . .

... − 1 0

0
...
... 0 1


. (2.15)

Then so(5, 1) consists of the set of elements S ∈ gl(6, R) satisfying the relation:

ST I5,1 + I5,1S = 0. (2.16)

Among those elements, the algebra e(4) is determined by the subset composed of:



...
Y

... 0

...
. . . . . . . . . . . .

...
0

... 02

...


,



... α1 α1

... α2 α2

04
... α3 α3
... α4 α4

. . . . . . . . . . . . . . .

α1 α2 α3 α4
... 0 0

−α1 −α2 −α3 −α4
... 0 0


, (2.17)

where Y T = −Y , each element belonging to so(4) ∼ so(3) ⊕ so(3), and the translations
(Pµ) along the xµ-axis, parametrized by αµ.



SYMMETRY REDUCTIONS OF THE LAX PAIR ... EQUATIONS 271

The linear action of the Euclidean group on R6 provided with the Cartesian coordinates
(η1, ..., η6) determines the standard action of Eo(4) on E4 through the formula:

xµ =
ηµ

η5 + η6
. (2.18)

We have elected the following basis† of so(4) ⊂ gl(6, R):

A1 = −X3 =
1
2
(M12 +M34), A2 = −X1 =

1
2
(M23 +M14), A3 = X2 =

1
2
(M13 −M24),

(2.19)

B1 = −Y3 =
1
2
(M12 −M34), B2 = −Y1 =

1
2
(M23 −M14), B3 = Y2 =

1
2
(M13 +M24),

(2.20)
[Mαβ ]µν = δµαδνβ − δµβδνα, [Mαβ ]56 = 0, (2.21)

where α, β, µ, ν = 1, .., 4. Let us note that Mαβ generate rotations in the (xα, xβ)-plane.
Since the SDYM equations and their Lax pair are left unchanged by the action of Eo(4),

reductions with respect to subgroups conjugated under Eo(4) will produced equivalent
reduced systems (see Refs. [1–3]). We can therefore limit ourselves to reductions by
a subgroup representative of each conjugacy class of subgroups of Eo(4) [44]. Such a
classification has been carried out for different subalgebras of interest in physics (see
Refs. [3, 44–47] and references therein) and a “normalized” list of representatives of the
conjugacy classes of subalgebras of e(4) under Eo(4) has been obtained in Ref. [44].

3 Invariance Conditions

The linear system (2.4) of the SDYM equations involves Yang-Mills fields (Aµ) and multi-
plets (Ψ) of scalar fields transforming under the fundamental representation of the gauge
group H.

The Yang-Mills fields can be interpreted as pullbacks to the base manifold of connection
1-forms on P (E4,H), and their invariance has been studied in many papers. For instance,
one may consult Refs. [5–8].

All the isotropy subgroups of the representatives of the conjugacy classes with orbits
of dimension one, two, or three correspond either to the identity or to a compact Lie
group: SO(2) or SO(3), and the approach presented in Refs. [5, 6] and [8] can then be
used to determine the most general and globally invariant gauge fields in E4. However,
we are only interested in local expressions for the symmetric fields, and we will impose
the infinitesimal form of these conditions.

Let us suppose that the symmetry group G acts (effectively) on each orbit G/Go with
cross-section 5, where Go is identified as the isotropy subgroup of G at each point of 5.

In finite form, the invariance conditions are given by [5, 6, 8]:

f∗gω = ρ−1(g, x)ω ρ(g, x) + ρ−1(g, x)d ρ(g, x), (3.1)

where ωσ = Aµ dx
µ.

†The notation A1, A2, A3, B1, B2, and B3 was previously used in ref. [44].
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Infinitesimally, we have that:

LX̃ω
σ = DW := dW + [ωσ,W ], (3.2)

∀g ∈ G, or ∀X ∈ G (the Lie algebra of G), where the gauge transformation ρ : G×E4 → H,
specifies the lift of the group action (fg) to the gauge bundle over G/Go×V (cf Refs [5, 6]
and [8]). The latter equation can be interpreted as the vanishing of the Lie derivative of the
Yang-Mills fields with respect to a vector field X̃ induced by an elementX of the symmetry
algebra G up to an infinitesimal gauge transformation, where W : G × E4 → H(the Lie
algebra of H). Let us point out that the map W is defined as:

W =
d

dt
ρ(g = etX , x)|t=0, (3.3)

Its vanishing leads to a strict invariance condition, i.e. an invariance of the field without
the help of any gauge transformation.

As for the multiplet of scalar fields, their finite and infinitesimal invariance conditions
can be respectively read as:

f̃∗g Ψ = ρ−1(g, x) Ψ, (3.4)

and
LX̃∗Ψ = −WΨ, (3.5)

∀X ∈ G, where f̃∗g and X̃∗ are respectively the lifts of the action and of the vector field
associated to X.

For simplicity, all the cases below involve only an invariance without gauge transfor-
mation. Other reduced systems might be derived by substitution in the SDYM equations
of invariant fields solutions to (3.1), (3.4) or (3.2), (3.5) with non-vanishing ρ and W
functions (cf Ref. [33]).

4 Reduction by Symmetry of the Lax Pair

Let us consider a symmetry group G, subgroup of the invariance group SO(5, 1). The
procedure of symmetry reduction consists essentially in substituting G-invariant Aµ and
Ψ on S4 × CP 1 in the set of differential equations, rewritten in terms of the orbit and
invariant coordinates of the G-action. Once a basis of a n-dimensional representative G of
a conjugacy class of the subalgebras of e(4) is chosen: {Xi, i = 1, ..., n}, we first determine
its induced vector fields on R4 × CP 1 ⊂ S4 × CP 1: {X̃i, i = 1, ..., n}, then select orbit
variable(s): {ξm,m = 1, ...,≤ n}, normally group parameters, and determine the invariant
coordinates: {χA}, with the formula:

LX̃i
χA = 0, (4.1)

∀i = 1, ..., n. Among the invariant variables χA, we can identify a (new) spectral parameter,
denoted ζ, which obeys to LX̂i

ζ 6= 0, for some i = 1, ..., n.
After insertion in the Lax pair (2.4) of the coordinates (ξm, χA) and the G-invariant

fields Aµ and Ψ, obtained via the method presented in the previous section, we are left
using the holomorphicity condition (2.4c) and by elimination of multiplying factors func-
tions of the orbits coordinates, with two reduced equations depending solely on invariant
variables.
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We can rewrite these reduced equations by dividing their differential and potential
parts as:

∇XΨ = (X +AX)Ψ = 0, (4.2a)

and
∇Y Ψ = (Y +AY )Ψ = 0, (4.2b)

where X and Y represent the respective vector components of the reduced equations of
the Lax pair (2.4).

It can be verified that the compatibility of the system (4.2) coincide with the SDYM
equations reduced under the same subgroup G:

[∇X ,∇Y ]−∇[X,Y ] = 0. (4.3)

Let us add for a simple treatment that the equation (2.4c) can be interpreted as an
invariance of Aµ (trivially) and Ψ under the translations (Pλ̄) along the complex coordinate
λ̄ on R2 ⊂ CP 1.

However, the compatibility (4.3) of (4.2) does not necessarily tally with the reduced
SDYM equations if the residual vector components span only a one dimensional vector
space. Still, the equations (4.2) respect the equality:

[∇X ,∇Y ]Ψ = fX∇XΨ + fY∇Y Ψ, (4.4)

where fX and fY are functions of the invariant coordinate(s), which give rise to the residual
SDYM equations when appropriately chosen. A reduced Lax pair, producing the correct
SDYM equations after reduction with respect to the same symmetry group is obtained if
certain multiplying factors are adjoined to each of the operators ∇X and ∇Y .

In fact, we have:
[hX∇X , hY∇Y ] = 0, (4.5)

with hX and hY , functions of the invariant coordinates.
From the commutator (4.5), we deduce that:

[X,Y ] +
1
hY

(XhY )Y − 1
hX

(Y hX)X = 0, (4.6a)

and
XAY − Y AX + [AX , AY ] +

1
hY

(XhY )AY −
1
hX

(Y hX)AX = 0. (4.6b)

The functions hX and hY are determined by solving (4.6) with the requirement that
(4.6b) corresponds to the reduced SDYM equations. Let us indicate that holonomic vector
components to any reduced Lax pair can be found by introducing the above-mentioned
factors : hX and hY . For two- and three-dimensional vector fields, holonomic components
can be determined by solving uniquely (4.6a), then (4.6b) will automatically coincide with
the reduced SDYM equations.

We end this section by presenting two examples which illustrates the above method:

(1) {Y3, P3, P4}:
The lifted vector fields have the form:

Ỹ3 = −1
2
(x1∂2 − x2∂1 − x3∂4 + x4∂3)− i(λ∂λ − λ̄∂λ̄) = −1

2
∂ϕ, (4.7a)
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with
P̃3 = ∂3, (4.7b)

P̃4 = ∂4. (4.7c)

Since the lift of Y3 to CP 3∗ is nontrivial, we expect a new spectral parameter among
the invariant variables. The orbit coordinates are:

ϕ = − arctan
(x2

x1

)
+
i

4
ln
(λ
λ̄

)
, x3, x4 (4.8)

and the invariant coordinates can be chosen as:

r =
√

(x1)2 + (x2)2, Λ = λλ̄

and

η = − arctan
(x2

x1

)
− i

4
ln
(λ
λ̄

)
. (4.9)

In terms of these variables on the stratum, the symmetric Yang-Mills fields have the
form:

(A1, A2, A3, A4)T = e−2 θY3(u1, u2, u3, u4)T , (4.10)

where θ = η + ϕ
2 , uµ = uµ(r), µ = 1, ..., 4 and Ψ = ψ(r,Λ, η).

Inserting (4.8), (4.9), (4.10) and Ψ in the linear system (2.4), we find:[
∂r −

i

r
∂η + u1 + iu2 − ei2θλ(u3 + iu4)

]
ψ = 0, (4.11a)

[
ei2θλ

(
∂r +

i

r
∂η + u1 − iu2

)
+ u3 − iu4

]
ψ = 0. (4.11b)

The condition (2.4c): ∂λ̄Ψ = 0 or
(

∂
∂
√

Λ
+ i

2
√

Λ
∂
∂η )ψ = 0, restricts us to the invariant

ζ =
√

Λei2η. In terms of the new spectral parameter ζ, the equations (4.11) become the
reduced Lax pair:

∇XΨ =
[
∂r +

2ζ
r
∂ζ + u1 + iu2 − ζ(u3 + iu4)

]
ψ = 0, (4.12a)

∇Y Ψ =
[
ζ
(
∂r −

2ζ
r
∂ζ

)
+ ζ(u1 − iu2) + (u3 − iu4)

]
ψ = 0. (4.12b)

A Lax pair expressed in terms of holonomic vector fields is derived from (4.12) if hX ∝
r and hY ∝ r

ζ . The SDYM equations reduced under the same subgroup arise as the

compatibility of the linear system (4.12) [44]:

u̇2 +
u2

r
+ [u1, u2]− [u3, u4] = 0,

u̇3 −
u3

r
+ [u1, u3] + [u2, u4] = 0, (4.13)

u̇4 −
u4

r
+ [u1, u4] + [u3, u2] = 0,
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where a dotted variable indicates a differentiation with respect to its argument. With the
change of variables: ξ = ln(r), w2 = r u2, w3 = r−1u3, w4 = r−1u4, and the gauge condition
u1 = 0, the integrability of (4.12) leads to a modified form of the Nahm’s equations [44].

To simplify computations in Example 2, the vector Pλ̄ = ∂λ̄ of the holomorphicity
equation (2.4c) is included in the symmetry algebra of lifted vector fields.

(2) {X3, Y3}:
Using the holomorphicity condition or invariance along λ̄: ∂λ̄Ψ = 0:

X̃3 = −1
2
(x1∂2 − x2∂1 + x3∂4 − x4∂3) = −1

2
∂χ, (4.14a)

Ỹ3 = −1
2
(x1∂2 − x2∂1 − x3∂4 + x4∂3)− i(λ∂λ − λ̄∂λ̄) =

1
2
∂φ, (4.14b)

where we have elected the orbit coordinates: χ, φ, and λ̄ and the invariant variables: r,R,
and ζ, which correspond to:

x1 = r cos
(χ+ φ

2

)4
, x2 = −r sin

(χ+ φ

2

)
,

x3 = R cos
(χ− φ

2

)
, x4 = −R sin

(χ− φ

2

)4
, λ = e2iφζ. (4.15)

Here ζ stands for the new spectral parameter.
The invariant Yang-Mills field obeying to (3.1) is given by:

(A1, A2, A3, A4)T = e−χX3e−φY3(u1, u2, u3, u4)T , (4.16)

where uµ = uµ(r,R) and Ψ = ψ(r,R, ζ).
Substitution of (4.15), (4.16), and Ψ into the Lax pair (2.4) implies that:

∇XΨ =

[
∂r − ζ∂R +

(
ζ

r
+
ζ2

R

)
∂ζ + u1 + iu2 − ζ(u3 + iu4)

]
ψ = 0, (4.17a)

∇Y Ψ =

[
∂R + ζ∂r +

(
ζ

R
− ζ2

r

)
∂ζ + u3 − iu4 + ζ(u1 − iu2)

]
ψ = 0. (4.17b)

The reduced SDYM equations are recovered through the compatibility of the system (4.17)
and have the form:

∂ru3 − ∂Ru1 + [u1, u3] + [u2, u4] = 0, (4.18a)

∂ru4 + ∂Ru2 − [u2, u3] + [u1, u4] = 0, (4.18b)

∂Ru4 − ∂ru2 +
u4

R
− u2

r
− [u1, u2] + [u3, u4] = 0. (4.18c)

A Lax pair with holonomic vectors follows if we put hX ∝ r and hY ∝ R.

5 Reduced Lax and SDYM Equations

In this section, we present the resulting symmetry reductions with respect to the repre-
sentatives of the classes of subalgebras of e(4) (see Table 2 of Ref. [44]) giving rise to
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differential systems which are not equivalent to a zero curvature (without parameter) con-
dition on the residual potentials, since the latter are then gauge equivalent to vanishing
solutions (see for instance the subalgebra 4d), or to systems of uncoupled first order linear
O.D.E.’s after a gauge choice (see for instance the representative 6b). One finds the list
of representatives of these subalgebras in Table 1 of this article. For comparison, the Ref.
[44] includes all the reduced SDYM equations under the representatives of e(4). The labels
attached to the representatives refer to the numbering adopted in Ref. [44], the generators
or elements forming a basis are also specified within curly brackets. We then provide the
orbit and invariant variables, as well as the invariant Yang-Mills fields determined accord-
ing to section 3. The reduced Lax pairs and their compatibility condition, the reduced
SDYM equations, follow. In order to simplify the computations, we have considered the
vector Pλ̄ = ∂λ̄ of the holomorphicity equation (2.4c) as part of the algebra of lifted vector
fields. This extension of the representative gives rise to the same reduced equations since
the Pλ̄-symmetry condition is equivalent to eq. (2.4c). We have parametrized the orbits of
the translations generated under Pλ̄ with the coordinate λ̄. In the following, the reduced

T A B L E 1
Representatives of Conjugacy Classes of Subalgebras of e(4)

Leading to Nonlinear Reduced SDYM Equations†

Representative(s) # in ref. [44] Basis of Subalgebra Condition

1a P4

1b P3, P4

1c P1, P2, P3

2a,3a,4a,5a αX3 + βY3 α, β ∈ R

2b,3b,4c,5b αX3 + βY3, P3, P4 α, β ∈ R

4b X3 + Y3, P3

6a X3, Y3

8a X1, X2, X3

9a Y1, Y2, Y3

13a X3 + Y3 + cP4 c ∈ R

13b X3 + Y3 + cP4, P3 c ∈ R

13c X3 + Y3 + cP4, P1, P2 c ∈ R

†The reduced SDYM equations are not equivalent to a zero curvature condition without parameter, or
to a system of uncoupled linear first order O.D.E.’s.
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equations are first written without any special choice of gauge. In some cases, a relation
to already known integrable systems is indicated.

1. 1a {P4}

Orbit coordinates: x4, λ̄.
Invariant coordinates: x1, x2, x3, λ.
Invariant Aµ and Ψ:

Aµ = uµ(x1, x2, x3)4, Ψ = ψ(x1, x2, x3, λ). (5.1)

Reduced Lax pair:

[∂1 + i∂2 + u1 + iu2 − λ(∂3 + u3 + iu4)]ψ = 0,

[∂3 + u3 − iu4 + λ(∂1 − i∂2 + u1 − iu2)]ψ = 0. (5.2)

Reduced SDYM equations:

∂1u2 − ∂1u2 − ∂3u4 + [u1, u2]− [u3, u4] = 0,

∂2u3 − ∂3u2 − ∂1u4 + [u2, u3]− [u1, u4] = 0, (5.3)

∂1u3 − ∂3u1 + ∂2u4 + [u1, u3] + [u2, u4] = 0,

which correspond to the Bogomolny equations [48, 49] with u4 = φ.

2. 1b {P3, P4}

Orbit coordinates: x3, x4, λ̄.
Invariant coordinates: x1, x2, λ.
Invariant Aµ and Ψ:

Aµ = uµ(x1, x2)4, Ψ = ψ(x1, x2, λ). (5.4)

Reduced Lax pair:

[∂1 + i∂2 − λ(u3 + iu4) + u1 + iu2]ψ = 0,

[λ(∂1 − i∂2 + u1 − iu2) + u3 − iu4]ψ = 0. (5.5)

Reduced SDYM equations:

∂1u2 − ∂1u2 + [u1, u2]− [u3, u4] = 0,

∂2u3 − ∂1u4 + [u2, u3]− [u1, u4] = 0, (5.6)

∂1u3 + ∂2u4 + [u1, u3] + [u2, u4] = 0.

A number of algebraic reductions have been performed with the help of gauge choices
starting from eq.(5.6). For instance, one can find a reduction to the Toda lattice equations,
to the chiral field equations (if null variables are used), as well as the elliptic sine-Gordon
equation [50].

3. 1c {P1, P2, P3}

Orbit coordinates: x1, x2, x3, λ̄.
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Invariant coordinates: x4, λ.
Invariant Aµ and Ψ:

Aµ = uµ(x4)4, Ψ = ψ(x4, λ). (5.7)

Reduced Lax pair:
[λ(i∂4 + u3 + iu4)− u1 − iu2]ψ = 0,

[i∂4 − λ(u1 − iu2)− u3 + iu4]ψ = 0. (5.8)

Reduced SDYM equations:

∂4u1 + [u2, u3]− [u1, u4] = 0,

∂4u2 − [u1, u3]− [u2, u4] = 0, (5.9)

∂4u3 + [u1, u2]− [u3, u4] = 0.

The Nahm equations [51–53] are recovered with the gauge choice u4 = 0 and ua → −ua.

4. 2a,3a,4a,5a {αX3 + βY3|α, β ∈ R}

Orbit coordinates: ξ = −(α+ β) arctan
(
x2

x1

)
− (α− β) arctan

(
x4

x3

)
, λ̄.

Invariant coordinates:

χ = (α− β) arctan
(x2

x1

)
− (α+ β) arctan

(x4

x3

)
, r =

√
(x1)2 + (x2)2,

R =
√

(x3)2 + (x4)2, ζ = e(iγ(−(α+β) arctan(x2/x1)−(α−β) arctan(x4/x3)))λ = eiγξλ,

where γ = β
α2 + β2 .

Invariant Aµ and Ψ:

A1 = u1 cos θ + u2 sin θ, A2 = −u1 sin θ + u2 cos θ,

A3 = u3 cosφ+ u4 sinφ, A4 = −u3 sinφ+ u4 cosφ, (5.10)

with φ = (α+ β)χ+ (α− β)ξ
2(α2 + β2)

, θ = −(α− β)χ+ (α+ β)ξ
2(α2 + β2)

, uµ = uµ(r,R, χ) and

Ψ = ψ(r,R, χ, ζ).

Reduced Lax pair:[
∂r − ζe−iΓχ∂R + i

(
α− β

r
+

(α+ β)
R

ζe−iΓχ
)
∂χ +

(
γ(α+ β)

r
− γ(α− β)

R
ζe−iΓχ

)
×

ζ∂ζ + u1 + iu2 − ζe−iΓχ(u3 + iu4)
]
ψ = 0, (5.11a)[

∂R + ζe−iΓχ∂r + i

(
α+ β

R
− (α− β)

r
ζe−iΓχ

)
∂χ −

(
γ(α− β)

R
+
γ(α+ β)

r
ζe−iΓχ

)
×

ζ∂ζ + u3 − iu4 + ζe−iΓχ(u1 − iu2)
]
ψ = 0, (5.11b)

where γ = β
α2 + β2 and Γ = α

α2 + β2 .



SYMMETRY REDUCTIONS OF THE LAX PAIR ... EQUATIONS 279

Let us note that holonomic vector parts can be obtained if (5.11a) and (5.11b) are
respectively multiplied by r and R.

Reduced SDYM equations:

∂Ru4 − ∂ru2 +
u4

R
− u2

r
+

(α+ β)
R

∂χu3 +
(α− β)

r
∂χu1 + [u2, u1] + [u3, u4] = 0,

∂ru3 − ∂Ru1 +
(α− β)

r
∂χu4 +

(α+ β)
R

∂χu2 + [u1, u3] + [u2, u4] = 0, (5.12)

∂ru4 + ∂Ru2 −
(α− β)

r
∂χu3 +

(α+ β)
R

∂χu1 + [u2, u3]− [u1, u4] = 0.

5. 2b,3b,4c,5b {αX3 + βY3, P3, P4|α, β ∈ R}

Orbit coordinates: θ = − arctan
(
x2

x1

)
, x3, x4, λ̄.

Invariant coordinates: r, ζ = eiγθλ, where γ = 2β
α+ β .

Invariant Aµ and Ψ:

A1 = u1 cos θ + u2 sin θ, A2 = −u1 sin θ + u2 cos θ,

A3 = u3 cos
(α− β

α+ β
θ
)

+ u4 sin
(α− β

α+ β
θ
)
, A4 = −u3 sin

(α− β

α+ β
θ
)

+ u4 cos
(α− β

α+ β
θ
)
,

(5.13)
where uµ = uµ(r) and Ψ = ψ(r, ζ).

Reduced Lax pair: [
∂r +

γ

r
ζ∂ζ + u1 + iu2 − ζ(u3 + iu4)

]
ψ = 0,

[
ζ∂r −

γ

r
ζ2∂ζ + ζ(u1 − iu2) + u3 − iu4

]
ψ = 0. (5.14)

Holonomic vector components can be obtained if the two above equations are multiplied
by r.

Reduced SDYM equations:

du2

dr
+
u2

r
+ [u1, u2]− [u3, u4] = 0,

du3

dr
+

1− γ

r
u3 + [u1, u3] + [u2, u4] = 0, (5.15)

du4

dr
+

1− γ

r
u4 + [u1, u4] + [u3, u2] = 0.

With a suitable change of variables and gauge choice, the above SDYM and corre-
sponding Lax equations can be algebraically reduced respectively to the equations of the
Toda lattice with damping and its linear system [33].

6. 4b {X3 + Y3, P3}

Orbit coordinates: θ = − arctan
(
x2

x1

)
, x3, λ̄.

Invariant coordinates: r =
√

(x1)2 + (x2)2, x4, ζ = eiθλ.
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Invariant Aµ and Ψ:

A1 = u1 cos θ + u2 sin θ, A2 = −u1 sin θ + u2 cos θ, A3 = u3, A4 = u4 (5.16)

where uµ = uµ(r, x4) and Ψ = ψ(r, x4, ζ).
Reduced Lax pair:[

∂r +
1
r
ζ∂ζ − iζ∂4 + u1 + iu2 − ζ(u3 + iu4)

]
ψ = 0,

[
ζ∂r −

1
r
ζ2∂ζ − i∂4 + ζ(u1 − iu2) + u3 − iu4

]
ψ = 0. (5.17)

One can find holonomic vector components if the two above equations are respectively
multiplied by r and r

ζ .
Reduced SDYM equations:

∂ru2 + ∂4u3 +
u2

r
+ [u1, u2]− [u3, u4] = 0,

∂ru3 − ∂4u2 + [u1, u3] + [u2, u4] = 0, (5.18)

∂ru4 − ∂4u1 + [u1, u4] + [u3, u2] = 0.

7. 6a {X3, Y3}

Orbit coordinates:

ξ = − arctan
(x2

x1

)
− arctan

(x4

x3

)
, χ = − arctan

(x2

x1

)
+ arctan

(x4

x3

)
, λ̄.

Invariant coordinates: r =
√

(x1)2 + (x2)2, R =
√

(x3)2 + (x4)2, ζ = eiχλ.
Invariant Aµ and Ψ.:

A1 = u1 cos
(ξ + χ

2

)
+ u2 sin

(ξ + χ

2

)
, A2 = −u1 sin

(ξ + χ

2

)
+ u2 cos

(ξ + χ

2

)
,

A3 = u3 cos
(ξ − χ

2

)
+ u4 sin

(ξ − χ

2

)
, A4 = −u3 sin

(ξ − χ

2

)
+ u4 cos

(ξ − χ

2

)
, (5.19)

where uµ = uµ(r,R) and Ψ = ψ(r,R, ζ).
The reduced Lax pair and SDYM equations are deduced from the same equations

obtained in case 4 with the values α = 1 and β = 0 by setting ∂χψ = 0 and ∂χuµ = 0.

8. 8a {X1, X2, X3}

Orbit coordinates: φ1, φ2, φ3 in x = e(φ1−φ2)X2eφ3X1e(φ1+φ2)X2 [0, 0, 0, R]T , and λ̄.
Invariant coordinates: R =

√
xµxµ, λ.

Invariant Aµ and Ψ:

[A1, A2, A3, A4]T = e(φ1−φ2)X2eφ3X1e(φ1+φ2)X2 [u1, u2, u3, u4]T , (5.20a)

where uµ = uµ(R). For the purpose of the calculations, we can express it in terms of
Cartesian coordinates. We then have:

Aµ = 2(η̄a
µνx

νva + δµνx
νv4), (5.20b)
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where vµ = vµ(R), with R = R2 and va = − 1
2Rua (a = 1, 2, 3), v4 = 1

2Ru4 and
Ψ = ψ(R, λ).

Reduced Lax pair:

R2[∂R + v4 − iv3 − λ(iv1 + v2)]ψ = 0,

R2[λ∂R − iv1 + v2 + λ(iv3 + v4)]ψ = 0. (5.21)

Reduced SDYM equations:

∂Rv1 +
2
R
v1 + [v2, v3] + [v1, v4] = 0,

∂Rv2 +
2
R
v2 + [v1, v3]− [v2, v4] = 0, (5.22)

∂Rv3 +
2
R
v3 − [v1, v2]− [v3, v4] = 0.

Let us add that the Nahm’s equations can be retrieved by putting v4 = 0 and by

carrying out the following change of variables: ϕ = − 1
2R

and wa = −2R2va.

9. 9a {Y1, Y2, Y3}

Orbit coordinates: φ1, φ2, φ3 in x = e(φ1−φ2)Y2eφ3Y1e(φ1+φ2)Y2 [0, 0, 0, R]T , and λ̄.

Invariant coordinates: R =
√
xµxµ, ζ = z1 − λz̄2

z2 + λz̄1 , where z1 := x1 + ix2 and

z2 := x3 − ix4.
Invariant Aµ and Ψ:

[A1, A2, A3, A4]T = e(φ1−φ2)Y2eφ3Y1e(φ1+φ2)Y2 [u1, u2, u3, u4]T , (5.23a)

where uµ = uµ(R). In order to facilitate calculations, it can be rewritten in terms of
Cartesian coordinates:

Aµ = 2(ηa
µνx

νva + δµνx
νv4), (5.23b)

where vµ = vµ(R), with R = R2 and vµ = − 1
2Ruµ and Ψ = ψ(R, ζ).

Reduced Lax pair:
[∂R + iv3 + v4 + ζ(v2 + iv1)]ψ = 0,

[ζ∂R + iv1 − v2 + ζ(v4 − iv3)]ψ = 0. (5.24)

Reduced SDYM equations:

[∂Rv1 + [v2, v3]− [v1, v4]]ψ = 0,

[∂Rv2 + [v3, v1]− [v2, v4]]ψ = 0, (5.25)

[∂Rv3 + [v1, v2]− [v3, v4]]ψ = 0.

The Nahm’s equations are derived if we require v4 = 0 and change va to −va. Contrary
to the previous cases, we would like to point out that even if the lift of the elements of the
symmetry algebra is nontrivial, the reduced Lax pair does not involve vector components
in the direction of the new spectral parameter.
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10. 13a {X3 + Y3 + cP4}

Orbit coordinates: ξ = − arctan
(
x2

x1

)
− cx4, λ̄.

Invariant coordinates: r =
√

(x1)2 + (x2)2, x3, χ = −c arctan
(
x2

x1

)
+ x4, ζ = eiγξλ,

where γ = 1
1 + c2

.

Invariant Aµ and Ψ:

A1 = u1 cos(γξ) + u2 sin(γξ), A2 = −u1 sin(γξ) + u2 cos(γξ), A3 = u3, A4 = u4, (5.26)

where uµ = uµ(r, x3, χ) and Ψ = ψ(r, x3, χ, ζ).
Reduced Lax pair:[

∂r − i
(
eiγcχζ +

c

r

)
∂χ − ζeiγcχ∂3 +

(γ
r
− γceiγcχζ

)
ζ∂ζ + eiγcχ((u1 + iu2)−

ζ(u3 + iu4))
]
ψ = 0,[

eiγcχζ∂r + ∂3 + i
(
eiγcχ c

r
ζ − 1

)
∂χ −

(γ
r
ζeiγcχ + γc

)
ζ∂ζ + ζ(u1 − iu2) + u3 − iu4

]
ψ = 0.

(5.27)
The above linear system is composed of holonomic vectors if the first equation is

multiplied by r.
Reduced SDYM equations:

sin(γcχ)
(
∂ru1 +

γ

r
u1 −

c

r
∂χu2

)
+ cos(γcχ)

(
∂ru2 +

γ

r
u2 +

c

r
∂χu1

)
−

∂3u4 + ∂χu3 + [u1, u2]− [u3, u4] = 0,

cos(γcχ)
(
∂ru3 −

c

r
∂χu4

)
− sin(γcχ)

(
∂ru4 +

c

r
∂χu3

)
−

∂3u1 − cγu1 − ∂χu2 + [u1, u3] + [u2, u4] = 0, (5.28)

sin(γcχ)
(
∂ru3 −

c

r
∂χu4

)
+ cos(γcχ)

(
∂ru4 +

c

r
∂χu3

)
+

∂3u2 + cγu2 − ∂χu1 − [u2, u3] + [u1, u4] = 0.

11. 13b {X3 + Y3 + cP4, P3}

The reduced Lax pair and SDYM equations are obtained by ignoring any dependence
with respect to the orbit variable x3 in the equations (5.27) and (5.28).

12. 13c {X3 + Y3 + cP4, P1, P2}

Orbit coordinates: x1, x2, θ = x4

c , λ̄.

Invariant coordinates: x3, ζ = e−i(x4/c)λ.
Invariant Aµ and Ψ:

A1 = u1, A2 = u2, A3 = u3, A4 = u4, (5.29)

where uµ = uµ(x3) and Ψ = ψ(x3, ζ).
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Reduced Lax pair:[
ζ∂3 +

ζ2

c
∂ζ + ζ(u3 + iu4)− u1 − iu2

]
ψ = 0,

[
∂3 −

ζ

c
∂ζ + ζ(u1 − iu2) + u3 − iu4

]
ψ = 0. (5.30)

We have a set of holonomic vector fields for this linear system if the factor 1
ζ is added

to the first equation.
Reduced SDYM equations:

∂3u1 +
u1

c
− [u1, u3]− [u2, u4] = 0,

∂3u2 +
u2

c
− [u2, u3] + [u1, u4] = 0, (5.31)

∂3u4 − [u1, u2] + [u3, u4] = 0.

6 Conclusion

In this paper, we have applied the method of reduction by symmetry to the Lax pair, or
linear system, of the SDYM equations on four-dimensional Euclidean space. Two main
aspects to be considered were, first, the extension of the Lax pair to the product of the
Euclidean space and the space of the spectral parameter (CP 1), and second, the lift of the
group action of SO(5, 1) to R4×CP 1 ⊂ CP 3∗ preserving the complex structures induced
on E4 by the linear system (2.4). Using a classification of the subalgebras of e(4) under
conjugacy classes with respect to the adjoint action of Eo(4), we have reduced the Lax
pair for the SDYM equations under each class representative which produces a nontrivial
residual differential system. A list of these representatives can be read in Table 1 and the
reduced Lax pairs are given in section 5. The compatibility of the reduced Lax pairs agrees
exactly with the similarly reduced SDYM equations. For many reduced linear systems, a
vector component along the (new) spectral parameter arose, typically when a nontrivial
lift of the group action was involved.

As possible developments of this work, further reductions of the Lax pairs and SDYM
equations can be effected for the representatives of conjugacy classes of subgroups of
SO(5, 1) as well as for Yang-Mills fields (Aµ) invariant up to gauge transformations. One
can also carry out reductions of the same set of equations on R(2,2) with respect to sub-
groups of the corresponding conformal group SO(3, 3), and equally for higher-dimensional
and self-dual spaces versions of these equations under subgroups of their space transfor-
mation groups. Finally, it could be interesting to apply the method of symmetry reduction
to the (universal) hierarchy of SDYM equations and to supersymmetric generalizations of
the above systems.
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