Conditional and Lie Symmetry of Nonlinear Wave Equation

Victor REPETA

Kyiv International University of Civil Aviation, Komarova Avenue 1, Kyiv 54, Ukraina

Abstract

Group classification of the nonlinear wave equation is carried out and the conditional invariance of the wave equation with the nonlinearity F(u) = u is found.

Let us consider the nonlinear wave equation

$$u_{00} + m\frac{u_0}{x_0} - p\frac{F(u)u_1}{x_1} - (F(u)u_1)_1 = 0,$$
(1)

where $u = u(x_0, x_1)$, $u_{\mu} = \frac{\partial u}{\partial x_{\mu}}$, $u_{\mu\mu} = \frac{\partial^2 u}{\partial x_{\mu}^2}$, $\mu = 0, 1, F(u)$ is an arbitrary differentiable function, $F'(u) \neq 0$, F(u) > 0, m and p are arbitrary constants.

Eq.(1) is widely used in mathematical physics. In the case m = p = 0 we have a well-known equation [1], namely

$$u_{00} - (F(u)u_1)_1 = 0. (2)$$

Besides, one can obtain Eq.(1) when the symmetry reduction of the multidimensional wave equation

$$g_{\mu\nu}u_{\mu\nu} - \left(F(u)u_a\right)_a = 0,$$

where

$$g_{\mu\nu} = \begin{cases} 0, & \mu \neq \nu, \\ 1, & \mu = \nu = 0, \\ -1, & \mu = \nu > 0, \end{cases} \quad \mu = 0, \dots, l, \quad a = l+1, \dots, n$$

to a two-dimensional wave equation is carried out. Eq.(1) has the following property: the local substitution $\int F(u)du = v$ transforms Eq.(1) into the equation

$$v_{11} + p\frac{v_1}{x_1} - m\frac{\Phi(v)v_0}{x_0} - (\Phi(v)v_0)_0 = 0,$$
(3)

where $\Phi(v)$ is the function inverse to $\int F(u) du$.

Transpositions of x_0 and x_1 , m and p in Eq.(3) lead to the equation from the class (1). This property facilitates investigation of the equation.

Results of symmetry classification of Eq.(1), which is made by the Lie approach [2], are given in Tables 1–4. It should be noted that the group properties of Eq.(2) were considered in detail in [1].

Copyright © 1996 by Mathematical Ukraina Publisher. All rights of reproduction in any form reserved. **Case 1.** m = 0, p = 0

Table 1			
F(u)	Lie Algebra		
arbitrary	$P_0 = \partial_0, P_1 = \partial_1, D_1 = x_0 \partial_0 + x_1 \partial_1$		
e^u	$P_0, P_1, D_1, D_2 = x_1 \partial_1 + 2 \partial_u$		
u^k	$P_0, P_1, D_1, D_3 = kx_1\partial_1 + 2u\partial_u$		
u^{-4}	$P_0, P_1, D_1, D_3, K_1 = x_0^2 \partial_0 + x_0 u \partial_u$		
$u^{-4/3}$	$P_0, P_1, D_1, D_3, K_2 = x_1^2 \partial_1 - 3x_1 u \partial_u$		

Case 2. $m = 0, \ p \neq 0$

Table 2 $\,$

F(u)	Lie Algebra
arbitrary	P_0, D_1
e^u	P_0, D_1, D_2
u^k	P_0, D_1, D_3
$u^{\frac{2(p-2)}{3-p}}$	$P_0, D_1, D_3, K_3 = x_1^{2-p} \partial_1 + (p-3) x_1^{1-p} u \partial_u$
u^{-4}	P_0, D_1, D_3, K_3, K_1

Case 3. $m \neq 0, \ p = 0$

Table 3

F(u)	Lie Algebra
arbitrary	P_1, D_1
e^u	P_1, D_1, D_2
$ u^k$	P_1, D_1, D_3
$u^{\frac{2(m-2)}{1-m}}$	$P_1, D_1, D_3, K_4 = x_0^{2-m} \partial_0 + (1-m) x_0^{1-m} u \partial_u$
$u^{-4/3}$	P_1, D_1, D_3, K_4, K_2

Case 4. $m \neq 0, p \neq 0$

Table 4

F(u)	Lie Algebra
arbitrary	D_1
e^u	D_{1}, D_{2}
u^k	D_{1}, D_{3}
$u^{\frac{2(p-2)}{3-p}}$	D_1, D_3, K_3
$u^{\frac{2(m-2)}{3-m}}$	D_1, D_3, K_4
$u^{\frac{2(p-2)}{3-p}}, p+m=4$	D_1, D_3, K_3, K_4

Results of the Q-conditional symmetry of Eq.(1) in the case F(u) = u are adduced in the following theorems:

Theorem 1. Equation

 $u_{00} - (uu_1)_1 = 0$

is Q-conditionally invariant under the following operators:

$$Q_{1} = x_{1}x_{0}^{2}\partial_{1} + (2x_{0} + \lambda x_{0}^{5})\partial_{u}, \quad \lambda = \text{const},$$

$$Q_{2} = 2x_{1}x_{0}^{2}\partial_{1} + (ux_{0}^{2} + 3x_{1}^{2})\partial_{u},$$

$$Q_{3} = \partial_{0} - 2x_{0}\partial_{1} + 8x_{0}\partial_{u},$$

$$Q_{4} = x_{0}\partial_{0} - (6x_{0}^{5} + x_{1})\partial_{1} + 2\left(u - 3\left(x_{1}^{2}x_{0}^{-2} + 2x_{1}x_{0}^{3} - 24x_{0}^{8}\right)\right)\partial_{u},$$

$$Q_{5} = 2x_{0}\partial_{0} + (x_{1} - 3x_{0}^{2})\partial_{1} - 2\left(u + 3x_{1} - 9x_{0}^{2}\right)\partial_{u},$$

$$Q_{6} = x_{0}\partial_{0} - 3x_{0}^{3}\partial_{1} + (u + 27x_{0}^{4})\partial_{u}.$$

Theorem 2. Equation

$$u_{00} + m\frac{u_0}{x_0} - (uu_1)_1 = 0$$

is Q-conditionally invariant under the following operators:

$$Q_7 = 2x_1\partial_1 + \left(u + (3-m)x_1^2x_0^{-2}\right)\partial_u,$$
$$Q_8 = \partial_0 - 2x_0\partial_1 + 8x_0\partial_u.$$

Theorem 3. Equation

$$u_{00} - p\frac{uu_1}{x_1} - (uu_1)_1 = 0$$

is Q-conditionally invariant under the following operator:

$$Q_9 = (p+3)x_0^2\partial_1 + 6x_1\partial_u.$$

The algorithm of the Q-conditional symmetry is given in [3]. It should be noted that the conditional symmetry of Eq.(2) for different F(u) is studied in [4].

References

- [1] Ames W.F. and Lohner R.J., Group properties of $u_{tt} = (f(u)u_x)_x$, Int. J. Non-Linear Mechanics, 1981, V.16, N 5/6, 439–447.
- [2] Ovsyannikov L.V., Group Analysis of Differential Equations, Academic Press, New York, 1982, 400p.
- [3] Fushchych W., Shtelen W. and Serov N., Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics, Dordrecht, Kluwer Academic Publishers, 1993, 436p.
- [4] Fushchych W.I., Serov M.I., Repeta V.K., Conditional symmetry, reduction and exact solutions of nonlinear wave equation, *Dopovidi Akademii Nauk Ukrainy*, (Proceedings of the Academy of Sciences of Ukraina), 1991, N 5, 29–36.