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Abstract
Group classification of the nonlinear wave equation is carried out and the conditional
invariance of the wave equation with the nonlinearity F (u) = u is found.

Let us consider the nonlinear wave equation

u00 + m
u0

x0
− p

F (u)u1

x1
− (F (u)u1)1 = 0, (1)

where u = u(x0, x1), uµ = ∂u
∂xµ

, uµµ = ∂2u
∂x2

µ
, µ = 0, 1, F (u) is an arbitrary differentiable

function, F ′(u) 6= 0, F (u) > 0, m and p are arbitrary constants.
Eq.(1) is widely used in mathematical physics. In the case m = p = 0 we have a

well-known equation [1], namely

u00 − (F (u)u1)1 = 0. (2)

Besides, one can obtain Eq.(1) when the symmetry reduction of the multidimensional wave
equation

gµνuµν − (F (u)ua)a = 0,

where

gµν =


0, µ 6= ν,
1, µ = ν = 0,
−1, µ = ν > 0,

µ = 0, . . . , l, a = l + 1, . . . , n

to a two-dimensional wave equation is carried out. Eq.(1) has the following property: the
local substitution

∫
F (u)du = v transforms Eq.(1) into the equation

v11 + p
v1

x1
−m

Φ(v)v0

x0
− (Φ(v)v0)0 = 0, (3)

where Φ(v) is the function inverse to
∫

F (u)du.
Transpositions of x0 and x1, m and p in Eq.(3) lead to the equation from the class (1).

This property facilitates investigation of the equation.
Results of symmetry classification of Eq.(1), which is made by the Lie approach [2], are

given in Tables 1–4. It should be noted that the group properties of Eq.(2) were considered
in detail in [1].
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Case 1. m = 0, p = 0

Table 1

F (u) Lie Algebra
arbitrary P0 = ∂0, P1 = ∂1, D1 = x0∂0 + x1∂1

eu P0, P1, D1, D2 = x1∂1 + 2∂u

uk P0, P1, D1, D3 = kx1∂1 + 2u∂u

u−4 P0, P1, D1, D3,K1 = x2
0∂0 + x0u∂u

u−4/3 P0, P1, D1, D3,K2 = x2
1∂1 − 3x1u∂u

Case 2. m = 0, p 6= 0

Table 2

F (u) Lie Algebra
arbitrary P0, D1

eu P0, D1, D2

uk P0, D1, D3

u
2(p−2)
3−p P0, D1, D3,K3 = x2−p

1 ∂1 + (p− 3)x1−p
1 u∂u

u−4 P0, D1, D3,K3,K1

Case 3. m 6= 0, p = 0

Table 3

F (u) Lie Algebra
arbitrary P1, D1

eu P1, D1, D2

uk P1, D1, D3

u
2(m−2)
1−m P1, D1, D3,K4 = x2−m

0 ∂0 + (1−m)x1−m
0 u∂u

u−4/3 P1, D1, D3,K4,K2

Case 4. m 6= 0, p 6= 0

Table 4

F (u) Lie Algebra
arbitrary D1

eu D1, D2

uk D1, D3

u
2(p−2)
3−p D1, D3,K3

u
2(m−2)
3−m D1, D3,K4

u
2(p−2)
3−p , p + m = 4 D1, D3,K3,K4
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Results of the Q-conditional symmetry of Eq.(1) in the case F (u) = u are adduced in
the following theorems:

Theorem 1. Equation

u00 − (uu1)1 = 0

is Q-conditionally invariant under the following operators:

Q1 = x1x
2
0∂1 +

(
2x0 + λx5

0

)
∂u, λ = const,

Q2 = 2x1x
2
0∂1 +

(
ux2

0 + 3x2
1

)
∂u,

Q3 = ∂0 − 2x0∂1 + 8x0∂u,

Q4 = x0∂0 −
(
6x5

0 + x1
)
∂1 + 2

(
u− 3

(
x2

1x
−2
0 + 2x1x

3
0 − 24x8

0

))
∂u,

Q5 = 2x0∂0 +
(
x1 − 3x2

0

)
∂1 − 2

(
u + 3x1 − 9x2

0

)
∂u,

Q6 = x0∂0 − 3x3
0∂1 +

(
u + 27x4

0

)
∂u.

Theorem 2. Equation

u00 + m
u0

x0
− (uu1)1 = 0

is Q-conditionally invariant under the following operators:

Q7 = 2x1∂1 +
(
u + (3−m)x2

1x
−2
0

)
∂u,

Q8 = ∂0 − 2x0∂1 + 8x0∂u.

Theorem 3. Equation

u00 − p
uu1

x1
− (uu1)1 = 0

is Q-conditionally invariant under the following operator:

Q9 = (p + 3)x2
0∂1 + 6x1∂u.

The algorithm of the Q-conditional symmetry is given in [3]. It should be noted that
the conditional symmetry of Eq.(2) for different F (u) is studied in [4].
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