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Abstract—With the development of space technology, data 
processing and computational grow exponentially, leading to 
future spaceflight hardware platform structure changed from 
the traditional monolithic processor to multicore platforms. 
Thus the high-performance computing in space should be 
considered. Flowing parallel as an effective way to achieve 
high-performance computing is widely used in the field of 
space image processing. However, due to the complexity of the 
space environment, computing tasks easier fails due to failure 
during running. The traditional recovery policy of simply 
rebooting the entire system costs excessive computation time 
although it ensures the reliability of the calculation. This paper 
presents a fine-grained recovery strategy for the task pipeline 
model and it ensures the security of the tasks in pipeline with 
less performance cost. 
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I. INTRODUCTION 
With the development of the hardware architecture, 

multiprocessor platforms have become a trend [1]. While 
computation of the data in space is exponential times 
growth，such as the development of space remote sensing 
technology lead the resolution of spatial images been 
increasing. Thus it makes more requests for high-
performance in space. Currently, parallel computing in 
multiprocessor architecture is the main research direction of 
high performance computing. Flow parallel as one of the 
parallel calculations is widely used in the aerospace field 
and is an effective way to improve computing performance. 
Meanwhile there is a large number of high-energy charged 
particles, such as electrons, protons, particles and heavy ions 
in outer space [2], these energetic particle bombardment 
aerospace equipment will occur Single Event Upset 
(SEU)[3,4] which perhaps leads the task to fail. Currently, 
the traditional fault recovery strategy is simple to restart the 
system, this coarse-grained recovery strategy to ensure 
reliability while offering high performance loss.  

In this paper, we propose a granular recovery policy for 
flowing parallel task model; it would ensure the reliability 
of computing tasks on the basis of reducing the overhead of 
system for recovering. 

II. PARALLEL TASKS OF PIPELINE 
Dividing a whole computing task into several pipeline 

parallel tasks are popularly available in consumer 
electronics systems such as multimedia processing and 

wireless communications [5].  For example, the upper 
portion of Figure 1 shows the JPEG image compression 
process [6]. The jpeg image compression algorithms can be 
divided to four mutually independent sub-tasks: image 
segmentation, Discrete Cosine Transform(DCT), zigzag 
scan sorting and coding. These sub-tasks compute in parallel 
pipeline.  Each sub-task to get input data from the previous 
task, and send it after processing to the next task for 
processing until this data is finally out of the pipeline.  At the 
same time, we have to assume that the output of each sub-
task in the pipeline depends only on the current input data. 
The operation on the current data does not affect the 
processing of the following data，That is, data are mutually 
independent.  The  general flow parallel model is shown in 
the lower part of Figure 1 

          

          
Figure 1．Flowing  parallel  model 

III. ARCHITECTURE PLATFORM 
 According to storage, Multiprocessor architecture 

platforms can be divided into shared memory and 
distributed memory two basic parallel computing platforms. 
As  Shown  in  Figure 1 (a), in the shared memory parallel 
computer [7], Each processing unit exchanges information 
and coordinates parallel tasks on each processor through 
accessing to the shared memory. As Shown  in  Figure 1 (b), 
in distributed-memory parallel computer [8], each processor 
has its own independent local memory.  Since there is no 
common storage units are available,  data exchange, 
coordination and control of the execution of each processor 
implement through the messaging. 
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Figure 2(a)．Shared MEM architecture 

 
Figure 2(b)． Distributed MEM architecture 

The recovery strategy that this article discusses is based 
on a shared memory parallel architecture platform. 
Assuming each task distributions on the different processors 
in pipeline for data processing, while adjacent tasks pass 
data through the shared memory. As Shown in Figure 3, we 
need to create a buff pool in the shared memory for every 
two adjacent tasks in pipeline and hanging in the list of 
corresponding head node. There are three tasks in the 
pipeline：task A, task B and task C.  Task A shares a buffer 
pool buff in the shared memory with Task B. Task A will 
put processed data into shared buff and task B obtains the 
input data from the buff, other so on. 

  
Figure 4．The shared array chain 

IV. FAULT RECOVERY STRATEGY 
Before considering recovery, we should assume that the 

store is reliable. That is to say, the fault tolerant mechanisms 
for the shared memory will ensure that the data stored in the 
shared memory is correct. Now assuming a certain task in 
the pipeline failing, the processes for this certain task from 
failure to failure recovery as shown in Figure 4. 

In the above four stages, the key is the third stage.   
When the task is restarted due to a fault, how to recover the 

communications between the failed task and the adjacent 
tasks is an important question. So we need to do the 
following aspects of works for answering this question. 

   
Figure 3．Failure recovery process 

• Backup data 
If the task in the pipeline restarts due to  failure during 

computing, then the current data processed by this task will 
be lost. So we need to backup the data flowing in the 
pipeline.  The following section describes the methods of 
data backup. Buffi still keeps the data which had been read 
by taski+1 until taski+1 has processed this data and send it 
to next task in the pipeline. In this case， the currently 
processed data will not be lost even the corresponding task 
restarts. 

• Recover read and write pointers 
 When the task restarting due to failure, it need to know 

which data should been dealt with. To solve this problem, it 
needs to ensure that the restarted task must know where it 
will read the data from and write the processed data to.  So 
every time the task to read from the buffer pool and write 
data to the buff pool, we must save or update the read and 
write pointers of this task. 

• Recover semaphores 
A task communicates with the adjacent tasks via the 

shared memory.  But it needs to use semaphore mechanism 
to control synchronous communication between tasks. 
Assuming sem is one of semaphores in the program. If the 
task has do the operation of semTake(sem) but not do the 
operation of semGive(sem) when the task will be restarted, 
then sem will be incorrect after this task being restarted. So 
before every time to do the operation of semTake(sem), it 
should save the current value of sem to the shared memory 
for recovery and when the task is restarted it should reread 
the value of sem from the shared memory firstly. 

The adjacent tasks in the pipeline communicate with 
each other via the buff pool in the shared memory. The 
design of the buff pool in the shared memory should ensure 
that the buff pool could help to backup data, recover 
semaphores and recover read and write pointers. So the 
structure of the buff pool is shown in Figure 5. Buffer pool 
structure contains two parts, identification and data. 
Identification section holds the buffer name, semaphores, 
the pointers that positioned reading and writing location 
after related task restart, as well as a pointer to point to the 
next buffer pool. 
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Figure 5. Structure of shared buff pool 

V. EXPERIMENT AND CONCLUSION 
The experiment uses the JPEG image compression 

program as an example and the system platform is Vxworks. 
The experiment divides the whole task of image 
compression into four pipelined sub-tasks firstly.  These 
subtasks respectively responsible for image segmentation, 
Discrete Cosine Transform(DCT), zigzag scan sorting and 
coding. 

The first step, the recovery strategy of this paper can 
recover it or not when failure occurs in the pipeline.  The 
whole pipeline will stop when one of the sub-tasks in the 
pipeline fails if not using any recovery mechanism. Then the 
pipelines can recovery from the failure if using the recovery 
method proposed by this paper. 

The second step, the experiment compares the efficiency 
of the recovery strategy of this paper with the traditional 
method that reboots system for recovery. The comparison is 
mainly from two aspects.  

• In the case of a single fault, we compare the 
running time of compressing images of different 
sizes using two recovery strategies for recovery 
respectively, as shown in Table 1. From Table 1, it 
tells us that the efficiency of recovery increases 
greater with the increase of the size of the image 
when comparing the recovery strategy proposed by 
this paper with the traditional method. Now the size 
of aerial image is larger and larger, so this recovery 
strategy is more appropriate. 

• Now the size of the tested image is 2048*2048, and 
the compression programs will suffer different times 
of failures. The running time of compression 
program using two recovery strategies for recovery 
respectively, as shown in Table 2. Table 2 shows 
that the efficiency of recovery increases greater with 
the increase of the number of the faults when 
comparing the recovery strategy proposed by this 
paper with the traditional method. 

 
 
 
 
 
 
 
 
 

TABLE I.  THE RUNNING TIME SUFFERED FROM SINGLE FAULT 

 

TABLE II. THE RUNNING TIME SUFFERED FROM MULTIPLE FAULTS 

 
Though the efficiency is not remarkably improved, the 

pipelining of compression program of jpeg pictures does 
effectively shortened the compression of high-resolution 
pictures. Moreover more efficiency would be achieved when 
dealing with bigger pictures. The sub-tasks in the pipeline 
and related synchronized communication, whenever any 
fault occurs, could be restored. And the efficiency of fault 
recovery improves with the size of the picture, thus greatly 
reducing the time consumption on recovery. Considering 
pictures needed in the astronomy fields are to be 
compressed, our approach is hugely timesaving when 
compressing pictures and recovering from possible faults. 
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