

A Fine-grained Fault Recovery Strategy for Task Pipeline

Jiantao He
College of Computer Science National University of

Defense Technology
Changsha, China

Jiantao_he@yeah.net

Hong Ning
College of Computer Science National University of

Defense Technology
Changsha, China

hning@nudt.edu.cn

Abstract—With the development of space technology, data
processing and computational grow exponentially, leading to
future spaceflight hardware platform structure changed from
the traditional monolithic processor to multicore platforms.
Thus the high-performance computing in space should be
considered. Flowing parallel as an effective way to achieve
high-performance computing is widely used in the field of
space image processing. However, due to the complexity of the
space environment, computing tasks easier fails due to failure
during running. The traditional recovery policy of simply
rebooting the entire system costs excessive computation time
although it ensures the reliability of the calculation. This paper
presents a fine-grained recovery strategy for the task pipeline
model and it ensures the security of the tasks in pipeline with
less performance cost.

Keywords-failure ; recovery ;task pipeline ; fine-grained

I. INTRODUCTION
With the development of the hardware architecture,

multiprocessor platforms have become a trend [1]. While
computation of the data in space is exponential times
growth，such as the development of space remote sensing
technology lead the resolution of spatial images been
increasing. Thus it makes more requests for high-
performance in space. Currently, parallel computing in
multiprocessor architecture is the main research direction of
high performance computing. Flow parallel as one of the
parallel calculations is widely used in the aerospace field
and is an effective way to improve computing performance.
Meanwhile there is a large number of high-energy charged
particles, such as electrons, protons, particles and heavy ions
in outer space [2], these energetic particle bombardment
aerospace equipment will occur Single Event Upset
(SEU)[3,4] which perhaps leads the task to fail. Currently,
the traditional fault recovery strategy is simple to restart the
system, this coarse-grained recovery strategy to ensure
reliability while offering high performance loss.

In this paper, we propose a granular recovery policy for
flowing parallel task model; it would ensure the reliability
of computing tasks on the basis of reducing the overhead of
system for recovering.

II. PARALLEL TASKS OF PIPELINE
Dividing a whole computing task into several pipeline

parallel tasks are popularly available in consumer
electronics systems such as multimedia processing and

wireless communications [5]. For example, the upper
portion of Figure 1 shows the JPEG image compression
process [6]. The jpeg image compression algorithms can be
divided to four mutually independent sub-tasks: image
segmentation, Discrete Cosine Transform(DCT), zigzag
scan sorting and coding. These sub-tasks compute in parallel
pipeline. Each sub-task to get input data from the previous
task, and send it after processing to the next task for
processing until this data is finally out of the pipeline. At the
same time, we have to assume that the output of each sub-
task in the pipeline depends only on the current input data.
The operation on the current data does not affect the
processing of the following data，That is, data are mutually
independent. The general flow parallel model is shown in
the lower part of Figure 1

Figure 1．Flowing parallel model

III. ARCHITECTURE PLATFORM
 According to storage, Multiprocessor architecture

platforms can be divided into shared memory and
distributed memory two basic parallel computing platforms.
As Shown in Figure 1 (a), in the shared memory parallel
computer [7], Each processing unit exchanges information
and coordinates parallel tasks on each processor through
accessing to the shared memory. As Shown in Figure 1 (b),
in distributed-memory parallel computer [8], each processor
has its own independent local memory. Since there is no
common storage units are available, data exchange,
coordination and control of the execution of each processor
implement through the messaging.

2nd International Symposium on Computer, Communication, Control and Automation (3CA 2013)

© 2013. The authors - Published by Atlantis Press 115

Figure 2(a)．Shared MEM architecture

Figure 2(b)． Distributed MEM architecture

The recovery strategy that this article discusses is based
on a shared memory parallel architecture platform.
Assuming each task distributions on the different processors
in pipeline for data processing, while adjacent tasks pass
data through the shared memory. As Shown in Figure 3, we
need to create a buff pool in the shared memory for every
two adjacent tasks in pipeline and hanging in the list of
corresponding head node. There are three tasks in the
pipeline：task A, task B and task C. Task A shares a buffer
pool buff in the shared memory with Task B. Task A will
put processed data into shared buff and task B obtains the
input data from the buff, other so on.

Figure 4．The shared array chain

IV. FAULT RECOVERY STRATEGY
Before considering recovery, we should assume that the

store is reliable. That is to say, the fault tolerant mechanisms
for the shared memory will ensure that the data stored in the
shared memory is correct. Now assuming a certain task in
the pipeline failing, the processes for this certain task from
failure to failure recovery as shown in Figure 4.

In the above four stages, the key is the third stage.
When the task is restarted due to a fault, how to recover the

communications between the failed task and the adjacent
tasks is an important question. So we need to do the
following aspects of works for answering this question.

Figure 3．Failure recovery process

• Backup data
If the task in the pipeline restarts due to failure during

computing, then the current data processed by this task will
be lost. So we need to backup the data flowing in the
pipeline. The following section describes the methods of
data backup. Buffi still keeps the data which had been read
by taski+1 until taski+1 has processed this data and send it
to next task in the pipeline. In this case， the currently
processed data will not be lost even the corresponding task
restarts.

• Recover read and write pointers
 When the task restarting due to failure, it need to know

which data should been dealt with. To solve this problem, it
needs to ensure that the restarted task must know where it
will read the data from and write the processed data to. So
every time the task to read from the buffer pool and write
data to the buff pool, we must save or update the read and
write pointers of this task.

• Recover semaphores
A task communicates with the adjacent tasks via the

shared memory. But it needs to use semaphore mechanism
to control synchronous communication between tasks.
Assuming sem is one of semaphores in the program. If the
task has do the operation of semTake(sem) but not do the
operation of semGive(sem) when the task will be restarted,
then sem will be incorrect after this task being restarted. So
before every time to do the operation of semTake(sem), it
should save the current value of sem to the shared memory
for recovery and when the task is restarted it should reread
the value of sem from the shared memory firstly.

The adjacent tasks in the pipeline communicate with
each other via the buff pool in the shared memory. The
design of the buff pool in the shared memory should ensure
that the buff pool could help to backup data, recover
semaphores and recover read and write pointers. So the
structure of the buff pool is shown in Figure 5. Buffer pool
structure contains two parts, identification and data.
Identification section holds the buffer name, semaphores,
the pointers that positioned reading and writing location
after related task restart, as well as a pointer to point to the
next buffer pool.

116

Figure 5. Structure of shared buff pool

V. EXPERIMENT AND CONCLUSION
The experiment uses the JPEG image compression

program as an example and the system platform is Vxworks.
The experiment divides the whole task of image
compression into four pipelined sub-tasks firstly. These
subtasks respectively responsible for image segmentation,
Discrete Cosine Transform(DCT), zigzag scan sorting and
coding.

The first step, the recovery strategy of this paper can
recover it or not when failure occurs in the pipeline. The
whole pipeline will stop when one of the sub-tasks in the
pipeline fails if not using any recovery mechanism. Then the
pipelines can recovery from the failure if using the recovery
method proposed by this paper.

The second step, the experiment compares the efficiency
of the recovery strategy of this paper with the traditional
method that reboots system for recovery. The comparison is
mainly from two aspects.

• In the case of a single fault, we compare the
running time of compressing images of different
sizes using two recovery strategies for recovery
respectively, as shown in Table 1. From Table 1, it
tells us that the efficiency of recovery increases
greater with the increase of the size of the image
when comparing the recovery strategy proposed by
this paper with the traditional method. Now the size
of aerial image is larger and larger, so this recovery
strategy is more appropriate.

• Now the size of the tested image is 2048*2048, and
the compression programs will suffer different times
of failures. The running time of compression
program using two recovery strategies for recovery
respectively, as shown in Table 2. Table 2 shows
that the efficiency of recovery increases greater with
the increase of the number of the faults when
comparing the recovery strategy proposed by this
paper with the traditional method.

TABLE I. THE RUNNING TIME SUFFERED FROM SINGLE FAULT

TABLE II. THE RUNNING TIME SUFFERED FROM MULTIPLE FAULTS

Though the efficiency is not remarkably improved, the

pipelining of compression program of jpeg pictures does
effectively shortened the compression of high-resolution
pictures. Moreover more efficiency would be achieved when
dealing with bigger pictures. The sub-tasks in the pipeline
and related synchronized communication, whenever any
fault occurs, could be restored. And the efficiency of fault
recovery improves with the size of the picture, thus greatly
reducing the time consumption on recovery. Considering
pictures needed in the astronomy fields are to be
compressed, our approach is hugely timesaving when
compressing pictures and recovering from possible faults.

ACKNOWLEDGMENT
This work was supported by National University of

Defense Techonology in Changsha, China..

REFERENCES
[1] Javaid H, Parameswaran S. Synthesis of heterogeneous pipelined

multiprocessor systems using ILP: jpeg case study[C]//Proceedings of

117

the 6th IEEE/ACM/IFIP international conference on
Hardware/Software codesign and system synthesis. ACM, 2008: 1-6.

[2] J. H. Adams. The Natural Radiation Environment inside a Spacecraft.
IEEE Trans. on Nuclear Science. 29(6):2095-2100,1982.

[3] Karlsson, J.; Liden, P.; Dahlgren, P.; Johansson, R.; Gunneflo,
U.;Using heavy-ion radiation to validate fault-handling
mechanisms,Micro, IEEE Volume 14, Issue 1, Feb. 1994 Page(s):8 –
23.

[4] R. Koga, S. D. Pinkerton, T. J. Lie, et al. Single-word multiple-bit
upsets in static random access devices,�IEEE Trans. on Nuclear
Science. 40(6):1941-1946,1993.

[5] Yu Z, Shi Z, Zeng X. Fault tolerant computing for stream DSP
applications using GALS multi-core processors[C]//Circuits and
Systems (ISCAS), 2011 IEEE International Symposium on. IEEE,
2011: 2305-2308.

[6] Wallace, Gregory K. "The JPEG still picture compression standard."
Communications of the ACM 34.4 (1991): 30-44.

[7] Gottlieb, Allan, et al. "The NYU ultracomputer—Designing an
MIMD shared memory parallel computer." Computers, IEEE
Transactions on 100.2 (1983): 175-189.

[8] Kumar V, Grama A, Gupta A, et al. Introduction to parallel
computing[M]. Redwood City: Benjamin/Cummings, 1994.

118

