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Abstract—To optimize the Block Widemann and Block Lancos 
algorithm is every important in solving large sparse systems in 
many engineering computing topic, so the parallel method of 
these two algorithms is built. This paper designs two different 
types of data parallel based on the original parallelism level 
and parallel scalability of two algorithms, and finally achieve a 
more efficient way for solving the problems. At last, we 
analysis the computing complexity and time cost, and gave a 
strategy for choosing the algorithms in different computing 
environment etc. based on the evaluation. 
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I. INTRODUCTION 
Large sparse equations is an important engineering 

computing topic, has been widely used in many important 
areas of our modern life, such as computational fluid 
dynamics, simulation and design of materials, petroleum 
seismic data processing, numerical weather prediction, 
code-breaking, numerical simulation of nuclear explosions 
and so on. Those are highly related to the solving of the 
sparse linear algebra equations. Currently, the most effective 
way for solving large sparse equations is through Block 
Laczos and Block Widemann algorithm.  

The key point of solving large sparse linear system 
efficiently when dealing with the issue above in this big data 
era is to design a reasonable parallel algorithm. As we 
already know that Block Laczos algorithm is a iterative 
algorithm, so the way make its computing process faster (as 
we hope to achieve efficient computing) is to find a deeper 
parallelism such as data parallel, and it is very magnitude 
because the large scale of data in most large sparse system 
becomes ignorable. While for the Block Wiedemann we 
hope to work on dividing matrix into blocks first and then 
work on a deeper parallelism. We believe in that way, we 
could achieve optimization for these two significant 
algorithms. 

II. MODELING 

A. Block Lanczos algorithm 
When using the Block Lanczos algorithm tosolve large 

sparse linear equations, we set machine word width to N 
(bit), equations scale to n, then generate a random matrix y 
of n×N, whenV0=A×y=BT×B×y, the Core steps of the 
algorithm is to calculate the iterative formula: 
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For 0<i :  

0=iW , 0=iV , Ni IS = . 
In the iterative process, Vi is an n × N matrix, iD , iE , 

iF , iS and iW  is NN × matrices, IN is an identity matrix. 
Iteration termination occurswhen Vi

TAVi=0 (i≠0). If setting 
m to be the number of the iteration, namely the minimum 
number of Vi

TAVi=0, then the value of m close to the rows 
of sparse matrix /63.24. 
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When 0=m
T
m AVV  and 0=mV : 

We get Ax=Ay, so the solution of Ax=0 will be the 
combination of columns of x-y. 

For VT
mAVm=0 and Vm≠0: 

Calculate z=(x-y)║Vm (x-y is in the front columns of z 
and Vm is next n columns).    

BZ: using Gaussian elimination to calculate the solution 
of BZU=0, finding basis of ZU, then obtaining partial 
solution of Bx = 0 [2]. 

It is easy to find the core calculation of this process is AVi, 
that is BT×B×Vi. 
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The core process of Block Lanczos [5][6] is processing 
the iteration of TB ×B×y, its parallel mode is a kind of data 
parallel modes which divide B into blocks, the blocks of B 
and BT is shown as follows: 
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the vector y: 
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This model is a completely relevant data parallel model, 
its main process is: first, processing Ui(k×N) =Bi(k×N)×y(N×n) 
individually, namely each process runs in parallel. And then 
obtaining the complete vector U(N×n) in every process 
through full collection of communication model. Next, 
processing Vi(k×n)=BT

i(k×N)×u(N×n) individually, and then 
obtaining every vector V(N×n) through the communication 
model, at last, set y=v, back to the beginning of this process 
as the next iteration.  

B. Block Wiedemann algorithm 
Using the Block Wiedemann algorithm for solving large 

sparse linear equations includes several steps: generate a 
sequence of matrix, obtain minimal polynomial and 
construct equations [1] [3]. So we make a future analysis on 
each step. 

Step 1: Matrix sequence generation 
According to the principle of Block Wiedemann, the 

width for Y may be one or more machine words, so 
YBXa iTi =)( can be split into a non-correlation calculation: 

( )vjYBXa j
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Step 2: Minimal polynomial calculation 
After splitting the matrix sequence, a coppersmith 

algorithm will be used to calculate matrix sequence to gain 
polynomial )(xf  [4]: 
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Based on the algorithm, it is easy to find out the main 

operations are polynomial multiplication and Gaussian 
elimination. 

Step 3: the structure equations 

∑
′

=

=
d

k

kk fZBw
0

)(~ˆ  

Calculating the formula above, just similar to the first 
step, the core calculation is to divide the vector BKZ into 
several column blocks, then processing the parallel 
computing:  Vj=BZj [3]. 

The main purpose of the first and third step of Block 
Wiedemann algorithm is processing the iteration 
computation B × y, its parallel mode is a data parallel model 
which divides B into blocks. The length of n takes one or 
more machine words (ωbit), so that n = ω × ν, then each 
element of the vector Y is a machine word width of ν: 
Y(N×n)=(Y0(N×�) Y1(N×�) Y2(N×�)…Yn(N×�) ).  

Dividing a(i)=XTBiY into v non-relevant computing to 
achieve the first layer of parallel computing: 
aj

(i)=XTBiYj,(0≤j<�), as described in step 1.  
The second layer of the parallel is dividing matrix B into 

several sub-matrices, i.e. row-based division:   
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p is the number of the processors in use through the 
second layer of parallel, k=N/P;  

Every iteration computing of BYj could be split up and 
run in every processor individually as unrelated: 
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Every processor will access the result of others through 

communication in every iteration process:  
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the current processor number). And the result is obtained as 
follow: 
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And then the system turns to the next iteration.  
In a word, the first and third step of  Block Wiedemann 

can be divided into several non-relevant parallel computing: 
B×Y0(N×�) B×Y1(N×�) … B×Y(ν-1)(N×�) , these are the data 
parallel models which process full-relevant sparse matrix-
vector multiplication. And the second step of Block 
Wiedemann uses Coppersmith algorithm to obtain matrix 
sequence for polynomial [4] f(x):  

a(x)f(x)=g(x)+xLe(x) 
It is a polynomial-matrix multiplication, similar to the 

sparse matrix-vector multiplication, which divides the 
matrix in a parallel way. Hence, it is a full relevant data 
parallel model. 

And then the process is finished. Next we should 
analysis the different parallel models for both algorithms 
individually and evaluate performances. 
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III. ANALYSIS AND PERFORMANCES 

A. Algorithm complexity analysis  
Lanczos algorithm complexity is shown in Table 1: 

TABLE I.  LANCZOS ALGORITHM COMPLEXITY 

Items iteration computing of BTBY 

BTBY: L times Communicate V: 2L times
Width of vector: n 2dN2/n 8/4

)/(8

2 2N
Bbit

LNn
=

 
Wiedemann algorithm complexity (the first and third 

step only) is shown in Table 2: 

TABLE II.  WIEDEMANN ALGORITHM COMPLEXITY 

 
Item Step 1: AI sequence 

a(i)=XTBiY 
Step 3: made up the solution in 
minimal polynomial 
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So we can tell that the Block Lanczos algorithm 

complexity is 2/3 of which in Block Wiedemann. And when 
we analysis further more about the Block Wiedemann 
algorithm, we find that when vector Y(N×cn)=(Y0(N×n) Y1(N×n) 
Y2(N×n)…Y(c-1)(N×n))  is divided into several blocks, the 
number of iterations will deduce to 1/c, besides each 
processing B×Yi(N×�)  is a non-relevant parallel computing. 
So it is not hard to claim that Block Wiedemann has more 
parallel scalability than the other one in the parallel 
computing field. 

B. Computing time analysis  
Normally, the iteration methods for sparse liner system 

need less storage and time. Since the computing time is a key 
point to evaluate a method, we analysis it for both algorithms 
[11]. 

Block Lanczaos computing time:  
Tlanzos=(Tbv+Tbtv+Tvtav) ×L≈2LTbv , 

Tvtav is other matrix multiplication time, L=N/n, the scale 
of parallel is p. 

Block Wiedemann computing time: 
Twiedemann=(Tbv+Tav) ×3L+Tcopp≈3LTbv+Tcopp, 

Tav is other matrix multiplication time, L=N/n, the scale 
of parallel is p, Tcopp is the time cost in the second step of 
Block Wiedemann, namely Coppersmith 
algorithm ,obtaining polynomial from matrix sequence. 

Based on the analysis of Wiedemann, we may induce the 
width of vector n into cn, and the sparse matrix-vector 
multiplication in the first and third step will be processed in 
the same c parallel computing. By then, L will deduce into 

L=N/(cn), and the time of Block Wiedemann is:   
Twiedemann=(Tbv+Tav) ×3L/c+Tcopp≈(3/c) LTbv+Tcopp, 

The scale is cp. 
In order to get acceleration in parallel for minimum time 

of the solution process, p is the scale of Block Lanczos 
algorithm while cp is of  the Block Wiedemann. We can 
easily get the time difference between these two algorithms, 
which is:  

Td= Tlanzos –Twiedemann≈((2c-3)/c) LTbv-Tcopp. 
So when positive, Block Wiedemann will be a better 

choice for solving large sparse linear systems in parallel way, 
otherwise we prefer to another one.  

For example, in common HPC, we assume that the 
number of CPU in computing environment is p=256, and the 
largest scale of parallel full-communication which is 
accelerating is Pmax , set p=Pmax, c=[P/Pmax] and we will make 
some examples: 

If Pmax=64,c=256/64=4: Td=5/4LTbv-Tcopp, because Tcopp 
is far smaller than LTbv, it is positive, Block Wiedemann is a 
better choice.  

If Pmax=256, c=256/256=1: Td=-LTb�-Tcopp, turn out to be 
negative this time, so it means Block Lancozs becomes the 
priority one. 

IV. CONCLUSION 
This paper  focuses on the solution of large-scale sparse 

matrix, and builts a full-relevant data parallel model for both 
Block Lanczos and Block Wiedemann algorithm. To 
analysis and compares these two algorithms, we believe that 
Wiedemann algorithm is more scalable in parallel computing. 
But according to different data scale and computing 
environment, different algorithm choice strategy will be 
available, especially in solving practical engineering issues. 
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