

Parallel Algorithms for Solving Large Sparse Linear Equations

Jingzhu Li1,2
1.School of Computer Science,

National University of Defense Technology
Changsha, China

2. Fok Ying Tung Graduate School
Hong Kong University of Science and Technology

Hong Kong

Peng Zou

School of Computer Science,
National University of Defense Technology

Changsha, China

Qingbo Wu
School of Computer Science,

National University of Defense Technology
Changsha, China

Abstract—To optimize the Block Widemann and Block Lancos
algorithm is every important in solving large sparse systems in
many engineering computing topic, so the parallel method of
these two algorithms is built. This paper designs two different
types of data parallel based on the original parallelism level
and parallel scalability of two algorithms, and finally achieve a
more efficient way for solving the problems. At last, we
analysis the computing complexity and time cost, and gave a
strategy for choosing the algorithms in different computing
environment etc. based on the evaluation.

Keywords- Large sparse linear equations; Block Lanczos;
Block Wiedemann; Parallel Computing;

I. INTRODUCTION
Large sparse equations is an important engineering

computing topic, has been widely used in many important
areas of our modern life, such as computational fluid
dynamics, simulation and design of materials, petroleum
seismic data processing, numerical weather prediction,
code-breaking, numerical simulation of nuclear explosions
and so on. Those are highly related to the solving of the
sparse linear algebra equations. Currently, the most effective
way for solving large sparse equations is through Block
Laczos and Block Widemann algorithm.

The key point of solving large sparse linear system
efficiently when dealing with the issue above in this big data
era is to design a reasonable parallel algorithm. As we
already know that Block Laczos algorithm is a iterative
algorithm, so the way make its computing process faster (as
we hope to achieve efficient computing) is to find a deeper
parallelism such as data parallel, and it is very magnitude
because the large scale of data in most large sparse system
becomes ignorable. While for the Block Wiedemann we
hope to work on dividing matrix into blocks first and then
work on a deeper parallelism. We believe in that way, we
could achieve optimization for these two significant
algorithms.

II. MODELING

A. Block Lanczos algorithm
When using the Block Lanczos algorithm tosolve large

sparse linear equations, we set machine word width to N
(bit), equations scale to n, then generate a random matrix y
of n×N, whenV0=A×y=BT×B×y, the Core steps of the
algorithm is to calculate the iterative formula:

121111 +−+−++ +++= iiiiiiiii FVEVDVSAVV
For i≥0：

)(2
1 i

T
iii

T
iiNi AVVSVAVWID +−=+

ii
T
iii SAVVWE 11 −+ −=

ii
T

iii
T

iii
T

iNii SAVVSVAVWAVVIWF))((1111
2

111121 −−−−−−−−−+ +−=
For 0<i :

0=iW , 0=iV , Ni IS = .
In the iterative process, Vi is an n × N matrix, iD , iE ,

iF , iS and iW is NN × matrices, IN is an identity matrix.
Iteration termination occurswhen Vi

TAVi=0 (i≠0). If setting
m to be the number of the iteration, namely the minimum
number of Vi

TAVi=0, then the value of m close to the rows
of sparse matrix /63.24.

Then calculate the formula: ∑
−

=

=
1

0
0

m

i

T
iii VVWVx

When 0=m
T
m AVV and 0=mV :

We get Ax=Ay, so the solution of Ax=0 will be the
combination of columns of x-y.

For VT
mAVm=0 and Vm≠0:

Calculate z=(x-y)║Vm (x-y is in the front columns of z
and Vm is next n columns).

BZ: using Gaussian elimination to calculate the solution
of BZU=0, finding basis of ZU, then obtaining partial
solution of Bx = 0 [2].

It is easy to find the core calculation of this process is AVi,
that is BT×B×Vi.

2nd International Symposium on Computer, Communication, Control and Automation (3CA 2013)

© 2013. The authors - Published by Atlantis Press 157

The core process of Block Lanczos [5][6] is processing
the iteration of TB ×B×y, its parallel mode is a kind of data
parallel modes which divide B into blocks, the blocks of B
and BT is shown as follows:

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

×−

×

×

×

))(1(

)(1

)(0

)(

Nkp

Nk

Nk

NN

B

B

B

B
L

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

×−

×

×

×

))(1(

)(1

)(0

)(

Nkp
T

Nk
T

Nk
T

NN
T

B

B

B

B
L

the vector y:

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

×−

×

×

×

))(1(

)(1

)(0

)(

nkp

nk

nk

nN

y

y

y

y
L

This model is a completely relevant data parallel model,
its main process is: first, processing Ui(k×N) =Bi(k×N)×y(N×n)
individually, namely each process runs in parallel. And then
obtaining the complete vector U(N×n) in every process
through full collection of communication model. Next,
processing Vi(k×n)=BT

i(k×N)×u(N×n) individually, and then
obtaining every vector V(N×n) through the communication
model, at last, set y=v, back to the beginning of this process
as the next iteration.

B. Block Wiedemann algorithm
Using the Block Wiedemann algorithm for solving large

sparse linear equations includes several steps: generate a
sequence of matrix, obtain minimal polynomial and
construct equations [1] [3]. So we make a future analysis on
each step.

Step 1: Matrix sequence generation
According to the principle of Block Wiedemann, the

width for Y may be one or more machine words, so
YBXa iTi =)(can be split into a non-correlation calculation:

()vjYBXa j
iTi

j <≤= 0,)(

Step 2: Minimal polynomial calculation
After splitting the matrix sequence, a coppersmith

algorithm will be used to calculate matrix sequence to gain
polynomial)(xf [4]:

)()()()(xexxgxfxa L+=
Based on the algorithm, it is easy to find out the main

operations are polynomial multiplication and Gaussian
elimination.

Step 3: the structure equations

∑
′

=

=
d

k

kk fZBw
0

)(~ˆ

Calculating the formula above, just similar to the first
step, the core calculation is to divide the vector BKZ into
several column blocks, then processing the parallel
computing: Vj=BZj [3].

The main purpose of the first and third step of Block
Wiedemann algorithm is processing the iteration
computation B × y, its parallel mode is a data parallel model
which divides B into blocks. The length of n takes one or
more machine words (ωbit), so that n = ω × ν, then each
element of the vector Y is a machine word width of ν:
Y(N×n)=(Y0(N×�) Y1(N×�) Y2(N×�)…Yn(N×�)).

Dividing a(i)=XTBiY into v non-relevant computing to
achieve the first layer of parallel computing:
aj

(i)=XTBiYj,(0≤j<�), as described in step 1.
The second layer of the parallel is dividing matrix B into

several sub-matrices, i.e. row-based division:

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

×−

×

×

×

))(1(

)(1

)(0

)(

Nkp

Nk

Nk

NN

B

B

B

B
L

p is the number of the processors in use through the
second layer of parallel, k=N/P;

Every iteration computing of BYj could be split up and
run in every processor individually as unrelated:

)(
)()(1

)1(
))(1,(

i
NjNk

i
kj YBY ωω ××

+
× = , l=0, 1, 2 … p-1, the

number of processors.
Every processor will access the result of others through

communication in every iteration process:
)1(

))(1,(
+

×
i

kjY ω ，l=0, 1 … Myid-1, Myid+1 … p-1 (Myid is
the current processor number). And the result is obtained as
follow:

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

+
×−

+
×

+
×

+
×

)1(
))(1,(

)1(
))(1,(

)1(
))(0,(

)1(
)(

i
kpj

i
kj

i
kj

i
Nj

Y

Y

Y

Y

ω

ω

ω

ω
L

And then the system turns to the next iteration.
In a word, the first and third step of Block Wiedemann

can be divided into several non-relevant parallel computing:
B×Y0(N×�) B×Y1(N×�) … B×Y(ν-1)(N×�) , these are the data
parallel models which process full-relevant sparse matrix-
vector multiplication. And the second step of Block
Wiedemann uses Coppersmith algorithm to obtain matrix
sequence for polynomial [4] f(x):

a(x)f(x)=g(x)+xLe(x)
It is a polynomial-matrix multiplication, similar to the

sparse matrix-vector multiplication, which divides the
matrix in a parallel way. Hence, it is a full relevant data
parallel model.

And then the process is finished. Next we should
analysis the different parallel models for both algorithms
individually and evaluate performances.

158

III. ANALYSIS AND PERFORMANCES

A. Algorithm complexity analysis
Lanczos algorithm complexity is shown in Table 1:

TABLE I. LANCZOS ALGORITHM COMPLEXITY

Items iteration computing of BTBY

BTBY: L times Communicate V: 2L times
Width of vector: n 2dN2/n 8/4

)/(8

2 2N
Bbit

LNn
=

Wiedemann algorithm complexity (the first and third

step only) is shown in Table 2:

TABLE II. WIEDEMANN ALGORITHM COMPLEXITY

Item Step 1: AI sequence

a(i)=XTBiY
Step 3: made up the solution in
minimal polynomial

∑
′

=

=
d

k

kk fZBw
0

)(~ˆ

 BV: L
times

Communicate
V: Ltimes

BV: L/2

NnnN fV ×× :
L/2

Communicate
V: L/2

Width
of
vector:
n

2dN2/n 8/2
)/(8

2N
Bbit

LNn = nnNdN /)(22 + 8/
)/(8

2/ 2N
Bbit

LNn
=

So we can tell that the Block Lanczos algorithm

complexity is 2/3 of which in Block Wiedemann. And when
we analysis further more about the Block Wiedemann
algorithm, we find that when vector Y(N×cn)=(Y0(N×n) Y1(N×n)
Y2(N×n)…Y(c-1)(N×n)) is divided into several blocks, the
number of iterations will deduce to 1/c, besides each
processing B×Yi(N×�) is a non-relevant parallel computing.
So it is not hard to claim that Block Wiedemann has more
parallel scalability than the other one in the parallel
computing field.

B. Computing time analysis
Normally, the iteration methods for sparse liner system

need less storage and time. Since the computing time is a key
point to evaluate a method, we analysis it for both algorithms
[11].

Block Lanczaos computing time:
Tlanzos=(Tbv+Tbtv+Tvtav) ×L≈2LTbv ,

Tvtav is other matrix multiplication time, L=N/n, the scale
of parallel is p.

Block Wiedemann computing time:
Twiedemann=(Tbv+Tav) ×3L+Tcopp≈3LTbv+Tcopp,

Tav is other matrix multiplication time, L=N/n, the scale
of parallel is p, Tcopp is the time cost in the second step of
Block Wiedemann, namely Coppersmith
algorithm ,obtaining polynomial from matrix sequence.

Based on the analysis of Wiedemann, we may induce the
width of vector n into cn, and the sparse matrix-vector
multiplication in the first and third step will be processed in
the same c parallel computing. By then, L will deduce into

L=N/(cn), and the time of Block Wiedemann is:
Twiedemann=(Tbv+Tav) ×3L/c+Tcopp≈(3/c) LTbv+Tcopp,

The scale is cp.
In order to get acceleration in parallel for minimum time

of the solution process, p is the scale of Block Lanczos
algorithm while cp is of the Block Wiedemann. We can
easily get the time difference between these two algorithms,
which is:

Td= Tlanzos –Twiedemann≈((2c-3)/c) LTbv-Tcopp.
So when positive, Block Wiedemann will be a better

choice for solving large sparse linear systems in parallel way,
otherwise we prefer to another one.

For example, in common HPC, we assume that the
number of CPU in computing environment is p=256, and the
largest scale of parallel full-communication which is
accelerating is Pmax , set p=Pmax, c=[P/Pmax] and we will make
some examples:

If Pmax=64,c=256/64=4: Td=5/4LTbv-Tcopp, because Tcopp
is far smaller than LTbv, it is positive, Block Wiedemann is a
better choice.

If Pmax=256, c=256/256=1: Td=-LTb�-Tcopp, turn out to be
negative this time, so it means Block Lancozs becomes the
priority one.

IV. CONCLUSION
This paper focuses on the solution of large-scale sparse

matrix, and builts a full-relevant data parallel model for both
Block Lanczos and Block Wiedemann algorithm. To
analysis and compares these two algorithms, we believe that
Wiedemann algorithm is more scalable in parallel computing.
But according to different data scale and computing
environment, different algorithm choice strategy will be
available, especially in solving practical engineering issues.

ACKNOWLEDGMENT
Our work is completed in Fok Ying Tung Graduate

School, Hong Kong University of Science and Technology,
supported by project “Research and Develop of Community
Version of New Network Terminal Operating System’.
(National High-tech R&D Program of China,
No.2011BAHI4B02)

REFERENCES
[1] Erich Kaltofen, B. David Saunders, On Wiedemann's Method of

Solving Sparse Linear Systems. National Science Foundation
No.CCR·90-06077 and No.CDA-88-05910.

[2] Wontae Hwang, Dongseung Kim. Load Balanced Block Lanczos
Algorithm over GF(2) for Factorization of Large Keys. Department of
Electrical Engineering, Korea University, Seoul, Korea (Rep. of).

[3] G.Villard. Further Analysis of Coppersmith’s Block Wiedemann
Algorithm for the Solution of Sparse Linear Systems.

[4] Villard.G. Computing Minimum Generating Matrix Polynomial. 1997.
Preprint IMAG Grenoble, Franc.

[5] Hwang, W. Improved Parallel Block Lanczos Algorithm over GF(2)
by Load Balancing, Master Thesis, Korea University, Dec. 2005.

[6] A. El Guennouni, K. Jbilou, H. Sadok. The Block Lanczos Method
for Linear Systems with Multiple Right-hand Sides. University du
Litteral.

[7] Wise D. S, Franco. J. Costs of quadtree representation of non-dense
matrices. Parallel distribute Compute. 9, pp. 282-296(1990).

159

[8] Lanczos, C.: An Iteration Method for the Solution of the Eigenvalue
Problem of Linear Differential and Integral Operators. Journal of Re-
search of the National Bureau of Standards 45, 4 (Oct. 1950), pp. 255-
282.

[9] Flesch, I., Bisseling, R. H.: A New Parallel Approach to the Block
Lanczos algorithm for Finding Nullspaces over GF(2). Master’s thesis,

Department of Mathematics, Utrecht University, Utrecht, the
Netherlands, November 2002.

[10] B. Parleft, A New Look at the Lanczos Algorithm for Solving
Symmetric System of Linear Equations. Linear Algebra Appl,
29(1980),pp.323-346

[11] Yan Zhong. “ Parallel menthod and preconditioning studies for large
sparse liner system” PHD thesis, school of computer science,NUDT.

160

