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Abstract

Results of renormgroup analysis of a quasi-Chaplygin system of equations are pre-
sented. Lie-Bäcklund symmetries and corresponding invariant solutions for different
”Chaplygin” functions are obtained. The algorithm of construction of a group on a
solution (renormgroup) using two different approaches is discussed.

The report is devoted to a group and renormgroup analysis of quasi-Chaplygin system
of equations. By this we mean the system of two first-order partial differential equations
for v and n

vt + vvx = aϕ(n)nx, nt + vnx + nvx = 0 , (1)

0 ≤ n < +∞, −∞ < v < +∞

with constant a and a nonlinearity function ϕ which depends only on n. Despite of the
simple form, this mathematical model has a wide field of applications. By means of the
hodograph transformation this system of equations is reduced to the system of partial
differential equations (PDE) for two functions τ = nt and χ = x − vt depending on
”velocity” v and ”density” n

τv − ψ(n)χn = 0 , χv + τn = 0 , aϕψ = n . (2)

Equations (2) were first treated in gas dynamics by Chaplygin in 1902 (see also [1]) and
the function (1/ψ) is referred to by his name. The progress in nonlinear optics and
plasma theory made it evident that the field of application of mathematical model based
on equations (1) (and therefore (2)) goes far beyond gas dynamics. To characterize the
media which exhibit the behavior similar to that of a Chaplygin gas, the term ”quasi-
Chaplygin media” was suggested. Examples of physical phenomena that take place in
different quasi-Chaplygin media described by PDE (1) with various nonlinearities ϕ(n)
were recently discussed in [2]. It should be noted that the physical meaning of variables
t, x, v and n may differ for different problems from that in gas dynamics. For example,
in nonlinear geometrical optics, t and x are coordinates respectively along and transverse
to the direction of laser–beam propagation, v is the derivative of eikonal with respect to
x and n is a laser beam intensity.
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The use of a symmetry group admitted by PDE under consideration enables to find
exact analytical solutions of boundary-value problems for systems (1) and (2) that are
both of theoretical and experimental interest. For example, in view of the nonlinearity
function

ϕ(n) = n(n+ b)c (3)

these solutions describe the self-focusing of a laser beam in a nonlinear medium, the
filamentation of an electron beam in plasma, etc.

The s-th order Lie-Bäcklund (L-B) symmetry of system (2) is characterized by a canon-
ical group generator (see, for example, [3])

X = f∂τ + g∂χ , (4)

where coordinates f and g appear to be linear in τ , χ and their s derivatives with respect
to n

f = f̄ +
s∑

i=0

(
aiτi + biχi

)
, g = ḡ +

s∑
i=0

(
αiτi + βiχi

)
; (5)

τs = (∂sτ/∂ns) , χs = (∂sχ/∂ns) .

All coefficients in linear forms (5) are functions of two variables v, n and the feasible
parameters of the system (2) (in case of nonlinearity (3) these are a, b and c).

First-order (s = 1) L-B symmetries are equivalent to the Lie point symmetries obtained
earlier in [4] (see also [3], p.92)†. For arbitrary nonlinearities ϕ(n) the symmetry Lie
algebra is infinite and is spanned by operators of dilatations of τ and χ and translations
along the v-axis and an infinite-dimensional ideal described by group the generator X∞
with coordinates f̄ , ḡ which are arbitrary solutions of linear PDE (2). System (2) admits
two additional operators iff the function ψ(n) satisfies the equation

ψ1(ψ/ψ1)nn ∓ ω2 = 0 , ψ1 6= 0, ω2 = const . (6)

It is easily checked that for the function ϕ of special form (3) equation (6) is satisfied
for ω2 = 0. Moreover, if we consider the transformations of parameters a, b and c along
with transformations of dynamic variables, we obtain in the latter case two more group
generators [5], [6] (the parameter c is a group invariant). These generators are of special
interest to construct a group on a solution which is discussed later.

As for L-B symmetries of high order (s ≥ 2), the system (2) admits a single group
generator of the given order s and transformations between symmetries of different orders
are governed by one recursion operator. This result is valid for the nonlinearity function
ϕ(n) of a general form, and L-B generators thus found correlate with those obtained in
[7]. In case of the nonlinearity function of the special form (6), we obtain the following
result: as the order s of L-B symmetry increases, so does the number of corresponding
group generators: for s = 2 we obtain five group generators, while for s = 3 there are seven
group generators and so on [5]. Transformations between these symmetries are obtained
with the help of three recursion operators.

†The problem was also discussed in details by S.V. Meleshko (Isentropical Flow of an Ideal Gas, 1989,
unpublished).
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A procedure of finding L-B symmetries involves tedious computations that become
rather complicated for high values of the order s and are unlikely to be done by hand. To
overcome these difficulties, one can use symbolic programs for determination of symmetry
groups of systems of differential equations. We have used the program DIMSYM [8] that
is based on the computer algebra system REDUCE. An attractive feature of this package
is that along with a set of heuristic rules for integration of a system of determining equa-
tions it also uses a heuristic-free algorithm of reduction of these equations to a standard
(involutive) form. In our case this way of solution appears to be the most efficient, espe-
cially when calculation of integrability conditions is complemented with direct integration
and simplification (expert regime and this procedure for s = 2 will be described in details
elsewhere). Having the idea of symmetry calculation for s = 2 in mind, we succeeded
using the DIMSYM package to calculate high-order (s = 2, 3, 4) L-B symmetries in a
rational time, yet in combination with some manual manipulations. In view of the linear
form representation for coordinates f and g given by formulae (5), this time is drastically
reduced.

Using L-B symmetries obtained, we can calculate invariant solutions that obey both
basic equations (2) and invariance conditions

f = 0 , g = 0 (7)

which are taken in the form of a linear combination of coordinates of the Lie point and
second-order L-B group generators. We present here three invariant solutions of system
(2) with nonlinearity function (3) for different values of the parameter c and b = 0 :
Example 1: c = −1;

τ =
(v/2)1/2

a3/4

(√
κ2 + 1− κ

)1/2
, κ =

√
a

v

(
1− n− v2

4a

)
,

χ = −1
2

ln
(v/2

√
a)1/2 +

(√
κ2 + 1− κ

)1/2

−(v/2
√
a)1/2 +

(√
κ2 + 1− κ

)1/2
. (8)

Example 2: c = −3/2;

τ =
v3/2

a5/4

(√
κ2 + 1− κ

)1/2 (√
κ2 + 1 + 2κ

)
, κ =

2
√
a

v

(
1−

√
n− v2

16a

)
,

χ = 3 ln
(v/
√
a)1/2 + 2

(√
κ2 + 1− κ

)1/2

−(v/
√
a)1/2 + 2

(√
κ2 + 1− κ

)1/2
+ 3

(
v√
a

)1/2(√
κ2 + 1− κ

)1/2
×

(√
κ2 + 1 + κ− v

4
√
a

)(
v2

16a
+

κv

2
√
a
− 1

)−1

. (9)

Example 3: c = −3;

τ =
a1/4

4v3/2

(√
κ2 + 1− κ

)1/2

(√
κ2 + 1 + 2κ

)
(κ2 + 1)3/2

, κ =
√
a

v

(
1
n
− 1 +

v2

4a

)
,
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χ = −1
4

(√
a

v

)3/2(√
κ2 + 1− κ

)1/2
[
3
4

(
κ2 + 1

)−1/2
(
v2

a
+

4
3

(
1− κ v√

a

))
−

2
v√
a

+
√
κ2 + 1 + 2κ

8(κ2 + 1)3/2

(
− v3

a3/2
+ 4

v√
a
(1− 2κ2) + 6κ

(
v2

a
− 4

3

))]
. (10)

It should be pointed out that solution (8) was found by Akhmanov et al. [9] about 30
years ago. Our approach [10] reveals the group-theoretical nature of this result.

The group generators obtained characterize the symmetry of the basic differential
manifold. However, these generators enable to construct such a symmetry group that
describes not only the symmetry of basic equations but the symmetry of a solution of
a boundary–value problem as well. We call this symmetry group a group on a solution
of a boundary-value problem, which thus appears as an invariant manifold of this group
generator. In the context of the general approach developed by D.V.Shirkov [11], this
group can be referred to as a renormalization group (RG), of course in a narrow sense.

In order to construct the group on a solution, we can use two different algorithms.
The first one is based on the restriction of a point symmetry group, more precisely its
infinite dimensional ideal, admitted by the original differential equations, on the solution
of the boundary-value problem [12], [13]. The second way of construction of a group on
a solution is based on a point–symmetry group analysis for a system of basic differential
equations and additional differential constraint that explicitly takes the boundary data into
account [13]. Such a constraint may result for example from an appropriate coordinate of
a canonical operator of the Lie-Bäcklund group, when the latter vanishes.

We demonstrate the first algorithm of RG construction for equations (2) with the
nonlinearity function ψ(n) of the special form (3). The Lie point group admitted by these
equations is characterized by generators Xi, i = 1, · · · , 6 and X∞

X = X∞ +
6∑

i=1

ciXi ≡
(
f̄ +

6∑
i=1

cifi

)
∂τ +

(
ḡ +

6∑
i=1

cigi

)
∂χ. (11)

Restriction on the solution means that coordinates f and g of the canonical operator (11)
turn to zero on the solution of the boundary-value problem

f̄ = −
6∑

i=1

cifi, ḡ = −
6∑

i=1

cigi . (12)

In contrast to (7) formulae (12) should be treated not as equations for τ and χ but as
relationships that yield expressions for the functions f̄ and ḡ in terms of fi, gi, i = 1, · · · , 6
taken on the solution τ = τ̄(v, n), χ = χ̄(v, n) of a boundary–value problem. Substitution
of (12) into (11) gives six renormgroup operators

R =
6∑

i=1

ci(a, b)Ri , (13)

each being determined by corresponding coordinates fi, gi and a pair of functions Ai, Bi

explicitly defined by the solution τ̄(v, n), χ̄(v, n). As an example, we present here only
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one renormgroup operator R5

R5 =
(
− τ

c+ 2
−A5

)
∂τ −B5∂χ −

n+ b

c+ 2
∂n + a∂a ,

A5 = −aτ̄a −
1

c+ 2
(τ̄ − (n+ b)τ̄n) , B5 = −aχ̄a +

n+ b

c+ 2
χ̄n .

(14)

For the solution described by formulae (8), functions A5, B5 in (14) are expressed as
follows:

A5 = − (v/2)1/2

4a3/4
√

1 + κ2

(√
κ2 + 1− κ

)1/2
(
κ+

√
1 + κ2 − 2

√
a

v

)
,

B5 =
(v/2)1/2

4a1/4
√

1 + κ2

(√
κ2 + 1− κ

)1/2

(
√
κ2 + 1− κ− (v/2

√
a))

(√
1 + κ2 − 3κ+ 2

√
a

v
− v√

a

)
.

Now we demonstrate the second algorithm of RG construction for the boundary–
value problem with the help of differential constraints. The number of distinct differential
constraints that satisfy given boundary data is infinite, so is the number of various RGs. To
be specific, we assume the latter in the form of the linear combination (7) of coordinates of
L-B second-order group generators with b = 0 and c = −1 which correspond to boundary
conditions for the solution (8):(

2n(1− n) + (nv2/2a)
)
τnn − nτn − (2n2v/a)χnn − (2nv/a)χn = 0 ,

2vnτnn + vτn +
(
2n(1− n) + (nv2/2a)

)
χnn +

(
2− 3n+ (nv2/2a)

)
χn = 0 .

(15)

Group analysis of (2) and (15) and subsequent restriction of the point group obtained
on the perturbation theory solution of the boundary–value problem (in the sense of the
equality f = 0, g = 0 similar to the relationship (12)) yield two RG operators

R̄1 = (τ − τ̄(v, n)) ∂τ + (χ− χ̄(v, n)) ∂χ , R̄2 = τ∂τ − v∂v − 2a∂a , (16)

where functions τ̄(v, n) and χ̄(v, n) are given by the right–hand sides of expressions (8).
The first operator in (16) coincides with R1 from the sum (13), while the second operator
R̄2 describes the ”trivial” symmetry of a solution.
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