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Abstract

The infinite series of Lorentz and Poincaré-invariant nonlinear versions of the Maxwell
equations are suggested. Some properties of these equations are considered.

Nonlinear equations of theoretical and mathematical physics attract considerable atten-
tion because of their specific properties, such as absence of the superposition principle,
nonlinear fields interactions, existence of soliton solutions. Nonlinear equations in elec-
trodynamics were suggested for the first time by Born [1], Born and Infeld [2], and
also Schrödinger [3] and were derived from the variational principle. Later Fushchych
and Tsifra [4], Fushchych [5], Fushchych, Tsyfra and Boyko [6] have applied theoretical-
algebraic approach to this problem. The purpose of the present paper is formulation
of Lorentz and Poincaré-invariant equations with the help of the variable replacement
method. Let us introduce one-dimensional Lorentz transformations [7]

x′1 =
x1 − βct√

1− β2
; x′2 = x2; x′3 = x3; t′ =

t− βx1/c√
1− β2

. (1)

Here x1,2,3 = x, y, z; c is the speed of light; t is the time; β = V/c; V is the velocity of
movement of inertial frame K’ relative to K.

One can see by calculation that the nonlinear equations

Φ1(I1, I2)∇. E = 4πρ; Φ1(I1, I2)(∇×H− 1
c
∂tE) = +4πρv;

Φ2(I1, I2)∇. H = 4πµ; Φ2(I1, I2)(∇×E +
1
c
∂tH) = −4πµw (2)

are invariant with respect to transformations (1), if the variables entering into them are
transformed in the following way [7]:

E′
1 = E1; E′

2 =
E2 − βH3√

1− β2
; E′

3 =
E3 + βH2√

1− β2
; (3)

H ′
1 = H1; H ′

2 =
H2 + βE3√

1− β2
; H ′

3 =
H3 − βE2√

1− β2
; (4)
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ρ′ = ρ
1− v1V/c2√

1− β2
; (5)

µ′ = µ
1− w1V/c2√

1− β2
; (6)

v′1 =
v1 − V

1− v1V/c2
; v′2,3 = v2,3

√
1− β2

1− v1V/c2
; (7)

w′
1 =

w1 − V

1− w1V/c2
; w′

2,3 = w2,3

√
1− β2

1− w1V/c2
. (8)

Here E, H are electric and magnetic fields; ρ, µ are densities of electromagnetic charges; v,
w are charge velocities; Φ1, Φ2 are arbitrary functions of Lorentz and Poincaré invariants
of fields I1 = 2(E2−H2), I2 = (E.H)2 [3]. In proving the invariance of the equations it is
necessary to take into account the following: invariance of the speed of light; the transfor-
mation properties of electromagnetic fields and charge densities; the law of transformation
of velocities; invariance of the functions Φ1 and Φ2.

Because of arbitrariness of the functions Φ1 and Φ2, system (2) contains an infinite
set of particular realizations of nonlinear Maxwell equations, among which it is possible
to indicate the following basic versions:

• the linear free Maxwell equations [3] with ρ = µ = 0 ;

• the linear one-charge Maxwell equations [3] with Φ1 = Φ2 = 1, µ = 0 ;

• the linear two-charge Maxwell equations [8] with Φ1 = Φ2 = 1.

Let us note some general properties of these nonlinear equations induced.
The equations (2) become not only relativistic but also conformally invariant if the

functions are Φ1(I2
1/I2), Φ2(I2

1/I2). The statement results from the proof of conformal
symmetry of linear Maxwell equations and identical conformal dimensions of the values
I2
1 and I2.

Equations (2) become linear in absence of currents and charges and so contain the
classical electrodynamics of free fields.

Generally, the nonlinearity is conditioned by currents and charges.
The equations keep the possibility of a electromagnetic field definition through the

two-potentials Aa = (φ,A), Ba = (Φ,B), a = 0, 1, 2, 3 [9]

E = −∇φ− ∂tA/c−∇×B; H = −∇Φ− ∂tB/c +∇×A. (9)

The two-potentials satisfy the nonlinear D’Alembert equations

Φ1(I1, I2)2Aa = 4πJa; Φ2(I1, I2)2Ba = 4πKa (10)

under condition of the relativistic invariant calibrations ∂aA
a = 0, ∂aB

a = 0, where
∂a = ∂/∂xa, x0 = ct, x1,2,3 = x, y, z; gab = diag(+,−,−,−); J0 = ρ, J = ρv/c; K0 = µ,
K = µw/c. Similarly to the initial equations (2), the free equations (10) automatically
become linear.
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In the important particular case of electrostatic charges in the one-charge electrody-
namics with A = 0, the scalar potential φ satisfies the nonlinear Laplace-Poisson equation

Φ1((∇φ)2)4 φ = −4πρ(x). (11)

Putting here Fourier-decomposition of the potential φ = (2π)−3
∫

φk exp(ik.x)d3k in the
case of electrical charge with the density ρ(x) for the component φk, we have

φk = (4π/k2)
∫

ρ(x)F1((∇φ)2) exp(−k.x)d3x = (4π/k2)(ρF1)k. (12)

Here (ρF1)k means the form-factor characterizing the electricity distribution in the effective
charge Q =

∫
ρF1d

3x, F1 = 1/Φ1. The form-factor can differ from unit. This will mean
the availability of corrections to the Coulomb field of charge.

Let us write the equations (2) in a different form. We divide their right parts into
the functions Φ1 and Φ2, designate 1/Φ1 = F1, 1/Φ2 = F2 and instead of ρ(x), µ(x),
J = ρ(x)v/c, K = µ(x)w/c we take new variables

ρ→ ρ(x)F1; µ→ µ(x)F2; J→ ρ(x)F1v/c; K→ µ(x)F2w/c. (13)

We will refer to the densities of charges and currents ρ, µ, J and K as the initial ones,
and to the values corresponding to them as the effective ones. Then it is possible to say
that nonlinear microscopic equations of electrodynamics are equations which contain the
effective values of charge densities and current densities instead of the initial ones [10]

∇.E = 4πF1(I1, I2)ρ; ∇×H− 1
c
∂tE = 4πF1(I1, I2)ρ

v
c
;

∇.H = 4πF2(I1, I2)µ; ∇×E +
1
c
∂tH = −4πF2(I1, I2)µ

w
c

; (14)

2Aa = 4πF1Ja; 2Ba = 4πF2Ka. (15)

These equations realize the principle of self-action: the initial charges generate electro-
magnetic fields which in its turn influence the initial charges, their densities and sizes up
to reaching the equilibrium state with the generating fields. So, in nonlinear versions of
the Maxwell and D’Alembert equations (14), (15) the electromagnetic charges

Q =
∫

ρ(x)F1(I1, I2)d3x; P =
∫

µ(x)F2(I1, I2)d3x (16)

receive at least partly the field nature. This property of charge is absent in the linear
electrodynamics. The effective charges Q and P keep the property of Lorentz-invariance
owing to the invariance of functions F1 and F2, and are integrals of movement due to the
existence of the continuity equations

∂t(ρF1) + c∇.(F1J) = 0; ∂t(µF2) + c∇.(F2K) = 0. (17)

It follows from the equations (17) that the initial charges are not conserved. For example,
for the electric charge q =

∫
ρd3x we have

∂tq = −
∮

ρvds−
∫

(∂tF1 + v.∇F1)(ρ/F1)d3x. (18)
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Here ds is an element of the area surrounding the volume element d3x as usual. The
change of the charge q is conditioned not only by the density of current j = ρv, but by
the change of the field invariant F1(I1, I2) in time and space.

As far as the nonlinear Maxwell equations satisfy the requirement of relativistic in-
variance, they have the potential interest to physics. In addition to the known general
theoretical questions of electrical charge stability and nature of its mass [3], it is possible
to point out also the field nature of a charge and the necessity of experimental verifi-
cation of the Coulomb law at short distances. The existence of equations (14) prompts
us also to induce the relativistic invariant action integral in the case of the one-charge
electrodynamics in a more general form

S = −mc

∫
Ψ1(I1, I2)ds− 1

c

∫
Ψ2(I1, I2)AaJ

ad4x− 1
16πc

∫
Ψ3(I1, I2)I1d

4x. (19)

Here as usually, m is the rest mass of a particle, ds is the element of the interval, Aa =
(φ,−A), d4x = cdtdxdydz [7], Ψ1, Ψ2, Ψ3 are the functions of relativistic invariants I1

and I2.
According to (19) we can indicate six versions of Maxwell electrodynamics with the

invariant speed of light:

• the classical linear electrodynamics with Ψ1 = Ψ2 = Ψ3 = 1 [3], [7];

• the linear electrodynamics with Ψ1 6= 1, Ψ2 = Ψ3 = 1;

• the nonlinear electrodynamics of the first type with Ψ3 6= 1, Ψ1 = Ψ2 = 1;

• the nonlinear electrodynamics of the second type with Ψ2 6= 1, Ψ1 = Ψ3 = 1;

• the nonlinear electrodynamics of the third type with Ψ2 6= 1,Ψ3 6= 1,Ψ1 = 1;

• the nonlinear electrodynamics of the fourth type with all functions Ψ 6= 1.

In particular, the Born model with Ψ3 = 4E2
0 [1− (1− I1/2E2

0)1/2]/I1 [1], the Born-Infeld
model with Ψ3 = 4E2

0 [1 − (1 − I1/2E2
0 − I2/4E4

0)1/2]/I1 [2], the Schrödinger model with
Ψ3 = 2E2

0 ln(1 + I1/2E2
0) [3] belong to the nonlinear version of the first type. (Here E0 is

the maximum field [3]).
This work belongs to the nonlinear version of the second type, as far as the variation of

the integral (19) with the constant value of Ψ2J
a leads to the equations (14). For example,

within the framework of this version the nonlinear Laplace-Poisson equation (11) may be
written as follows:

[
1 + α

(∂φ

∂r

)2
] [( 1

r2

) ∂

∂r

(
r2 ∂φ

∂r

)]
=


−2q

r2

( a√
π

e−a2r2
)

if ρ = ρ1;

−2q

r2

(a

π

sinar

ar

)
if ρ = ρ2

. (20)

Here we put Φ1 = [1 + αI1] = [1 + αE2]H=0 = [1 + α(∂φ/∂r)2]; ρ1 = (q/2πr2)(a/
√

π) ×
exp(−a2r2); ρ2 = (q/2πr2)(a/π)(sinar/ar), q is the electrical charge, r = (x2+y2+z2)1/2,
α = k/a, k is the proportionality coefficient, a is the parameter with inverse length
dimension (1/cm). Tending a→∞ (α→ 0), we have the linear Laplace-Poisson equation

1
r2

∂

∂r

(
r2 ∂φ

∂r

)
= −2q

r2
δ (r), (21)
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where a solution of the equation has the known form φ = q/r. One can see that the linear
theory is one with point charges. The nonlinear theory is one with the density of charges
distributed over space. Densities of charges ρ1 and ρ2 correspond to the various physical
models of charges.

The other versions were not investigated. They can be accompanied by dependence of
the effective mass on electromagnetic field.

In addition to these six versions, it is possible to formulate the nonlinear electrodyna-
mics with a variable velocity of light. The model of this type was proposed by Fushchych
[5].
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