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In the present paper new classes of exact solutions of the nonlinear d’Alembert equation
in the space R1,n, n ≥ 2,

2u + λuk = 0 (1)

are constructed. Here

2 = u00 − u11 − . . .− unn, uµν =
∂2u

∂xµ∂xν
, u = u(x),

x = (x0, x1, . . . , xn); µ, ν = 0, 1, . . . , n.

Symmetry properties of equation (1) have been studied in the paper [1] in which it was
established that equation (1) is invariant under the extended Poincare algebra AP̃ (1, n):

J0a = x0∂a + xa∂0, Jab = xb∂a − xa∂b, Pµ = ∂µ,

S = −xµ∂µ +
2u

k − 1
∂u (a, b = 1, . . . , n; µ = 0, 1, . . . , n).

The symmetry reduction of the equation (1) was considered in [1–5]. Maximal subalgebras
of rank n of the algebra AP̃ (1, n) were described in [3, 4]. These results allow to construct
all symmetry ansatzes reducing the equation (1) to ordinary differential equations. Using
the solutions of the reduced equations, some classes of multiparametric exact solutions of
the equation (1) were found. Classification of the maximal subalgebras of rank n − 1 of
the algebra AP̃ (1, n) was given in [5]. Using these subalgebras ansatzes reducing equation
(1) to equations of two variables were constructed.

The present paper continues the research which was carried out in [3–5]. Here new
operators of conditional symmetry of the d’Alembert equation are found. Using these
operators conditionally-invariant ansatzes reducing equation (1) to ordinary differential
equations are built. New classes of exact solutions of this equation are constructed.

Consider the subalgebra L =< G1, . . . , Gm−1, Pm+1, . . . , Pn > where Ga = J0a − Jam,
a = 1, 2, . . . ,m− 1. Let solutions of the equation (1) satisfy the conditions

G1u = 0, . . . , Gm−1u = 0, Pm+1u = 0, . . . , Pnu = 0. (2)
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Conditions (2) select from the set of solutions of the equation (1) the subset of solutions
invariant under L. We investigate the symmetry of the system (1), (2).

The subalgebra L has the invariants u, ω1 = x0 − xm, ω2 = x2
0 − x2

1 − . . . − x2
m. By

means of the ansatz u = u(ω1, ω2) the system (1), (2) is reduced to the equation

4ω1u12 + 4ω2u22 + 2(m + 1)u2 + λuk = 0,

u12 = ∂2u
∂ω1∂ω2

, u22 = ∂2u
∂ω2

2

, u2 = ∂u
∂ω2

.
(3)

In this case the investigation of the system (1), (2) is reduced to that of the symmetry of
the equation (3).

Theorem 1. The maximal algebra of invariance of equation (3) in the case k 6= 0, m + 1
m− 1

and m > 1 in the sense of Lie is a 4-dimensional Lie algebra A(4) which is generated by
such operators:

X1 = ω1
∂

∂ω1
+ ω2

∂

∂ω2
− 1

k − 1
u

∂

∂u
,

X2 = ω2
∂

∂ω2
− 1

k − 1
u

∂

∂u
, X3 = ω1

∂

∂ω2
,

M = ωl
1

(
ω1

∂

∂ω1
+ ω2

∂

∂ω2
− m− 1

2
u

∂

∂u

)
, l =

(m− 1)(k − 1)
2

− 1.

We classify one-dimensional subalgebras of the algebra A(4) with respect to G-conjugation,
where G = expA(4).

Theorem 2. Let F be a one-dimensional subalgebra of the algebra A(4). Then F is con-
jugated with one of the following algebras:

1) F1 =< X1 + αX2 >; 2) F2 =< X2 >: 3) F3 =< X1 + αX3 > (α = ±1);

4) F4 =< X3 >; 5) F5 =< M + αX2 > (α = 0,±1); 6) F6 =< M + αX3 > (α = ±1).

The following ansatzes correspond to subalgebras F1–F6 of Theorem 2:

F1 : u = ω
α+1
1−k

1 ϕ(ω), ω = ω2ω
−α−1
1 ;

F2 : u = ω
1

1−k

2 ϕ(ω), ω = ω1;

F3 : u = ω
1

1−k

1 ϕ(ω), ω =
ω2

ω1
− α lnω1;

F4 : u = ϕ(ω), ω = ω1;

F5 : u = (ωl
1ω2)

1
1−k ϕ(ω), ω =

α

l
ω−l

1 + ln
ω2

ω1
;

F6 : u = ω
1−m

2
1 ϕ(ω), ω =

ω2

ω1
+

α

l
ω−l

1 .
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These ansatzes reduce the equation (3) to ordinary differential equations:

F1 : −4αωϕ̈ +
4(l − αk)

k − 1
ϕ̇ + λϕk = 0;

F2 : − 4ω

k − 1
ϕ̇− 4l

(k − 1)2
ϕ + λϕk = 0;

F3 : −4αϕ̈ +
4l

k − 1
ϕ̇ + λϕk = 0;

F4 : λϕk = 0;

F5 : −4αϕ̈ +
4α

k − 1
ϕ̇ + λϕk = 0;

F6 : −4αϕ̈ + λϕk = 0.

Using the ansatzes which correspond to the subalgebra F1 in the case α = 0, α = 2l
k + 1

and α = l(k + 1)
2 , we obtain the following solutions of equation (3):

u1−k =
λ(k − 1)2

4l
{ω2 + Cω1}, (4)

u1−k =
λ(k − 1)2

4l

{
ω

1
2
2 + Cω

2l+k+1
2(k+1)

1

}2
, (5)

u1−k =
λ(k − 1)2

4l

{
ω

1
2
2 + Cω

l(k+1)+2
2(k+1)

1 ω
k−1

2(k+1)

2

}2
. (6)

The solution of equation (3) which is invariant under the subalgebra F6 is

u1−k =
λ(k − 1)2

8α(k + 1)
ωl−1

1

(
ω2 +

α

l
ω1−l

1 + Cω1

)2
. (7)

In order to construct new exact solutions of the d’Alembert equation, it is possible to
use the operator M , acting by M on known solutions of reduced equation (3). Let θt be
the transformation defined by the element exp(tM). The transformation θt acts on the
variables u, ω1 and ω2 in the following way

θt(ωi) = ωi(1− ltωl
1)
− 1

l , θt(u) = u(1− ltωl
1)

m−1
2l ,

where i = 1, 2, ; l = (m− 1)(k − 1)
2 − 1.

Consider, for example, a one-parametric class of solution

u1−k =
λ(k − 1)2

4l
(ω2 + C1ω1)

of equation (3) in the case k 6= m + 1
m− 1. By means of the invariance group of equation (3)

this class gives a 2-parametor class of solutions

u1−k =
λ(k − 1)2

4l
(ω2 + C1ω1)(1 + C2ω

l
1).
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Thus, the classes of solutions of equations (3) are obtained. Each of these solutions ex-
pressed in the variables x0, x1, . . . , xn is a solution of the d’Alembert equation (1). Acting
on these solutions with the group P̃ (1, n) we obtain multiparametric classes of exact so-
lutions of the d’Alembert equation.

Using the groups of invariance of equations (1) and (3) we can do the same for solutions
(5)–(7). Consequently we obtain multiparametric exact solutions of equation (1). We write
down these solutions for equations (1) in the space R1,n using the following notations:

a = (a0, a1, . . . , an), bi = (bi0, bi1, . . . , bin), y = (y0, y1, . . . , yn),

yµ = xµ + αµ, a • y = a0y0 − a1y1 − . . .− anyn, σm =
λ(k − 1)2

2(m− 1)(k − 1)− 4
.

1) u1−k = σm(y • y + (b1 • y)2 + . . . + (bn−m • y)2)
(
1 + c(a • y)

(k−1)(m−1)
2

−1
)
,

a • a = 0, a • bi = 0, bi • bi = −1, bi • bj = 0

if i 6= j (i, j = 1, 2, . . . , n−m); k 6= m + 1
m− 1

, m = 2, 3, . . . , n.

2) u1−k = σm

{[
(y • y + (b1 • y)2 + . . . + (bn−m • y)2)

(
1 + C1(a • y)

(k−1)(m−1)
2

−1
)] 1

2 +

C2(a • y)
m(k−1)
2(k+1)

(
1 + C1(a • y)

(k−1)(m−1)
2

−1
) k−1

2(k+1)
}2

,

a • a = 0, a • bi = 0, bi • bi = −1, bi • bj = 0

if i 6= j (i, j = 1, 2, . . . , n−m); k 6= m + 1
m− 1

, m = 2, 3, . . . , n.

3) u1−k = σm

{[
(y • y + (b1 • y)2 + . . . + (bn−m • y)2)

(
1 + C1(a • y)

(k−1)(m−1)
2

−1
)] 1

2 +

C2(a • y)
(k−1)
4(k+1)

((k+1)(m−1)−2)(y • y + (b1 • y)2 + . . . + (bn−m • y)2)
k−1

2(k+1)

}2
,

a • a = 0, a • bi = 0, bi • bi = −1, bi • bj = 0

if i 6= j (i, j = 1, 2, . . . , n−m); k 6= m + 1
m− 1

, m = 2, 3, . . . , n.

4) u1−k =
λ(k − 1)2

8α(k + 1)
(a • y)

(k−1)(m−1)
2

−2
{
y • y + (b1 • y)2 + . . .+

(bn−m • y)2 +
2α

(k − 1)(m− 1)− 2
(a • y)2−

(k−1)(m−1)
2

}2
,

a • a = 0, a • bi = 0, bi • bi = −1, bi • bj = 0

if i 6= j (i, j = 1, 2, . . . , n−m); k 6= −1,
m + 1
m− 1

, m = 2, 3, . . . , n.
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