*-Representations of the Quantum Algebra $U_{q}(s l(3))$

L.B. TUROVSKAYA

Institute of Mathematics of the National Ukrainian Academy of Sciences, 3 Tereshchenkivs'ka Street, Kyïv, Ukraïna

Abstract

Studied in this paper are real forms of the quantum algebra $U_{q}(s l(3))$. Integrable operator representations of $*$-algebras are defined. Irreducible representations are classified up to a unitary equivalence.

1 Introduction

There is a quantum analog of the enveloping algebra $U_{q}(\mathbf{J})$, where $q \in \mathbf{C} \backslash\{0, \pm 1\}$ is a parameter (see [1]) associated with each complex simple Lie algebra \mathbf{J}. The quantum algebra $U_{q}(s l(3))$ is a \mathbf{C}-algebra generated by $k_{i}^{ \pm 1}, X_{i}, Y_{i}, i=1,2$, satisfying the relations:

$$
\begin{align*}
& \quad\left[k_{1}, k_{2}\right]=0, \quad k_{i} k_{i}^{-1}=k_{i}^{-1} k_{i}=1, \\
& k_{i} X_{j}=q^{a_{i j}} X_{j} k_{i}, \quad k_{i} Y_{j}=q^{-a_{i j}} Y_{j} k_{i}, \tag{1}\\
& {\left[X_{i}, Y_{j}\right]=\delta_{i j} \frac{k_{i}^{2}-k_{i}^{-2}}{q-q^{-1}},} \tag{2}\\
& X_{i}^{2} X_{j}-\left(q+q^{-1}\right) X_{i} X_{j} X_{i}+X_{j} X_{i}^{2}=0, \quad i \neq j, \\
& Y_{i}^{2} Y_{j}-\left(q+q^{-1}\right) Y_{i} Y_{j} Y_{i}+Y_{j} Y_{i}^{2}=0, \quad i \neq j, \tag{3}
\end{align*}
$$

where

$$
a_{i j}=\left\{\begin{array}{cc}
-1 / 2, & i \neq j \\
1, & i=j
\end{array} \quad \text { and } \quad \delta_{i j}=\left\{\begin{array}{cc}
0, & i \neq j \\
1, & i=j .
\end{array}\right.\right.
$$

It is natural for such algebras to study representations of their real forms. Some representations of $U_{q}(s l(3))$ were studied by different authors. In particular, a *-representation of $U_{q}(s l(2))$ was studied in [7]. All finite-dimensional representations of $U_{q}(s l(N))$, which are equivalent to a representation of the real form $s u_{q}(N)$ (defined by the involution $X_{i}^{*}=Y_{i}$, $k_{i}^{*}=k_{i}$, for $q \in \mathbf{R}$ and $k_{i}^{*}=k_{i}^{-1}$, for $q \in \mathbf{T}$) were investigated in [1]. The paper [6] studied the so-called Harish-Chandra modules of $s u_{q}(N, 1), q \in \mathbf{R}$, i. e., such representations that the spectra of k_{i} belong to $q^{\mathbf{Z} / 2}$, besides that, restriction of the representations to the subalgebra $s u_{q}(N)$ is decomposed into an orthogonal sum of irreducible representations of $s u_{q}(N)$ in such a way that each of them is contained in the decomposition once (a quantum anlog of the representations of $s u(N, 1)$ which are integrable to the group $S L(N, \mathbf{R}))$. Representations of another real form, the $*$-algebra $s l_{q}(3, \mathbf{R}), q \in \mathbf{R}$, defined by the involution $k_{i}^{*}=k_{i}^{-1}, X_{i}^{*}=X_{i}, Y_{i}^{*}=Y_{i}$, is described in [10].

Copyright © 1996 by Mathematical Ukraina Publisher. All rights of reproduction in any form reserved.

In this paper we study representations of real forms of $U_{q}(s l(3))$ by using a technique of semilinear relations developed in [9], [5]. Since the use of unbounded operators is necessary in each case, we give definitions of operator representations of $*$-algebras in a Hilbert space H. In accordance with these definitions, we describe all irreducible representation up to a unitary equivalence.

2 Object

The quantum algebra $U_{q}(s l(3))$ is the \mathbf{C}-algebra generated by $k_{i}, k_{i}^{-1}, X_{i}, Y_{i}, i=1,2$, satisfying the relations:

$$
\begin{align*}
& \quad\left[k_{1}, k_{2}\right]=0, \quad k_{i} k_{i}^{-1}=k_{i}^{-1} k_{i}=1, \\
& k_{i} X_{j}=q^{a_{i j}} X_{j} k_{i}, \quad k_{i} Y_{j}=q^{-a_{i j}} Y_{j} k_{i} \tag{4}\\
& {\left[X_{i}, Y_{j}\right]=\delta_{i j} \frac{k_{i}^{2}-k_{i}^{-2}}{q-q^{-1}},} \tag{5}\\
& X_{i}^{2} X_{j}-\left(q+q^{-1}\right) X_{i} X_{j} X_{i}+X_{j} X_{i}^{2}=0, i \neq j \\
& Y_{i}^{2} Y_{j}-\left(q+q^{-1}\right) Y_{i} Y_{j} Y_{i}+Y_{j} Y_{i}^{2}=0, i \neq j \tag{6}
\end{align*}
$$

where

$$
a_{i j}=\left\{\begin{array}{cc}
-1 / 2, & i \neq j \\
1, & i=j
\end{array} \quad \text { and } \quad \delta_{i j}=\left\{\begin{array}{cc}
0, & i \neq j \\
1, & i=j
\end{array}\right.\right.
$$

Remark 1 Transposition $k_{i} \leftrightarrow k_{i}^{-1}$ gives $U_{q}(s l(3)) \leftrightarrow U_{q^{-1}}(s l(3))$.

3 Real Forms (*-algebras)

Consider real forms of $U_{q}(s l(3))$. We will assume by definition that the real form of an algebra A is determined by such an involution that:

1) it transforms a generator into a linear combination of generators,
2) axiom $(A B)^{*}=B^{*} A^{*}$ does not lead to a relation which is not a corollary of (1)-(3). Consider nonisomorphic $*$-algebras, which are real forms of $U_{q}(\operatorname{sl}(3))$. Set $t=q^{1 / 2}$.

Proposition 1 There are six real forms of $U_{q}(s l(3))$
$A_{1}: k_{i}^{*}=k_{i}, X_{1}^{*}=Y_{i}, t \in \mathbf{R} ; k_{i}^{*}=k_{i}^{-1}, q \in \mathbf{T} ;$
$A_{2}: k_{i}^{*}=k_{i}, X_{1}^{*}=-Y_{1}, X_{2}^{*}=-Y_{2}, t \in \mathbf{R} ; k_{i}^{*}=k_{i}^{-1}, q \in \mathbf{T}$;
$A_{3}: k_{i}^{*}=k_{i}, X_{i}^{*}=-Y_{i}, t \in \mathbf{R} ; k_{i}^{*}=k_{i}^{-1}, q \in \mathbf{T}$;
$A_{4}: k_{i}^{*}=k_{i}^{-1}, X_{i}^{*}=X_{i}, Y_{i}^{*}=Y_{i}, t \in \mathbf{R} ; k_{i}^{*}=k_{i}, q \in \mathbf{T}$;
$A_{5}: k_{i}^{*}=k_{j}^{-1}, X_{i}^{*}=X_{j}, Y_{i}^{*}=Y_{j}, i \neq j, t \in \mathbf{R} ; k_{i}^{*}=k_{j}, q \in \mathbf{T}, i \neq j$;
$A_{6}: k_{i}^{*}=k_{j}, X_{i}^{*}=Y_{j}, i \neq j, t \in \mathbf{R} ; k_{i}^{*}=k_{j}^{-1}, i \neq j, q \in \mathbf{T}$;
where $\mathbf{T}=\{\mathbf{z} \in \mathbf{C}| | \mathbf{z} \mid=\mathbf{1}\}$.

For $q \in T \quad *$-algebras A_{1}, A_{2}, A_{3} are isomorphic.
Remark 2 1) There are no $*$-structure for $U_{q}(s l(3))$ when $t \notin \mathbf{R} \cup \mathbf{T}$.
2) Only $*$-algebras $A_{1}, A_{2}, A_{3}, A_{5}$ with $t \in \mathbf{R} ; A_{4}, A_{6}$ with $t \in \mathbf{T}$ are $*$-Hopf-algebras (which means that involution agrees with comultiplication, counit and antipode). A complete description of $*$-Hopf algebras of the quantum algebras $U_{q}(\mathbf{J})(\mathbf{J}$ a is simple Lie algebra) is given, in particular, in [8].

4 *-Representations of $U_{q}(s l(3))$

To study the representations of different real forms of $U_{q}(s l(3))$ with using unbounded operators is necessary. Following [5], we give

Definition $1 A$ collection of operators k_{i}, X_{i}, Y_{i} is called a representation of $A_{i}, i=\overline{1,3}$ in a Hilbert space H if there exists a dense set $\Phi \subset H$ such that:
a) Φ is invariant with respect to $k_{i}, X_{i}, Y_{i}, E(\Delta), \Delta \in \mathbf{B}\left(\mathbf{R}^{3}\right)$, where $E(\cdot)$ is a joint resolution of indentity for the family of commuting selfadjoint operators ($k_{i}, X_{1}^{*} X_{1}$, $i=1,2$);
b) Φ consists of bounded vectors for $k_{i}, X_{1}^{*} X_{1}, X_{2}^{*} X_{2} i=1,2$;
c) relations (1)-(3) hold on Φ.

Under such a definition the technique of semilinear relation developed in [5] allows one to describe all the irreducible representations of the $*$-algebras up to a unitary equivalence. A detailed study of the representations of $*$-algebras A_{1}, A_{2} is given in [5]. In particular, it was proved that there are representations of A_{2} such that the spectrum of operator k_{i}, $i=1,2$ does not belong to $q^{\mathbf{Z} / 2}$ under such a definition. The following theorem gives a full description of the irreducible representations of $*$-algebra A_{3}.

Theorem 1 For $q \in R, q>1$, the $*$-algebra A_{1} has the following irreducible representations:
a)

$$
\begin{aligned}
k_{1} f_{m_{1}, m_{2}, m_{3}}= & q^{m_{1}+\left(\beta+1+m_{2}-m_{3}\right) / 2} f_{m_{1}, m_{2}, m_{3}} \\
k_{2} f_{m_{1}, m_{2}, m_{3}}= & q^{m_{3}-m_{2}-\left(m_{1}+\delta+1\right) / 2} f_{m_{1}, m_{2}, m_{3}} \\
X_{1} f_{m_{1}, m_{2}, m_{3}}= & \sqrt{\left[m_{1}-m_{3}+1\right]_{q}\left[\beta+m_{1}+m_{2}+1\right]_{q}} f_{m_{1}+1, m_{2}, m_{3}} \\
X_{2} f_{m_{1}, m_{2}, m_{3}}= & \sqrt{\left[m_{2}\right]_{q}\left[\delta+m_{2}\right]_{q}}\left(\prod_{r=0}^{m_{1}-1} \frac{\left[\beta+m_{2}+1\right]_{q}}{\left[\beta+m_{2}+r\right]_{q}}\right)^{1 / 2} \times \\
& \left(\prod_{r=0}^{m_{3}-1} \frac{\left[\beta+m_{2}+r-1\right]_{q}}{\left[\beta+m_{2}+r+1\right]_{q}}\right)^{1 / 2} f_{m_{1}, m_{2}-1, m_{3}}+ \\
& g\left(m_{1}, m_{2}, m_{3}\right)\left(\prod_{r=0}^{m_{2}-1} \frac{\left[\beta+m_{2}+m_{3}-r-1\right]_{q}}{\left[\beta+m_{2}+m_{3}-r+1\right]_{q}}\right)^{1 / 2} f_{m_{1}, m_{2}, m_{3}+1}
\end{aligned}
$$

where

$$
g\left(m_{1}, m_{2}, m_{3}\right)= \begin{cases}\sqrt{\frac{\left[m_{3}+1\right]_{q}\left[\delta-m_{3}-\beta\right]_{q}\left[m_{1}-m_{3}\right]_{q}}{\left[\beta+m_{3}+1\right]_{q}}} \times & \\ \left(\prod_{r=0}^{m_{1}-m_{3}-2}[2+r]_{q}\right. \\ 0, & \text { if } m_{3}<m_{1}+1 \\ \sqrt{\frac{\left[m_{3}+1\right]_{q}\left[\delta-m_{3}-\beta\right]_{q}\left[m_{1}-m_{3}\right]_{q}}{\left[\beta+m_{3}+1\right]_{q}},} & \text { if } m_{3}=m_{1} \\ \sqrt{[1 / 2},\end{cases}
$$

with $0 \leq m_{3} \leq m_{1}, m_{2} \geq 0,0 \leq m_{3} \leq s-1, \beta \geq 0, \delta=\beta+s-1$;
b)

$$
\begin{aligned}
k_{1} f_{m_{1}, m_{2}, m_{3}}= & q^{-\beta-m_{1}-1+\left(m_{3}-m_{2}\right) / 2} f_{m_{1}, m_{2}, m_{3}} \\
k_{2} f_{m_{1}, m_{2}, m_{3}}= & q^{m_{2}-m_{3}+\left(m_{1}+\delta\right) / 2} f_{m_{1}, m_{2}, m_{3}} \\
X_{1} f_{m_{1}, m_{2}, m_{3}}= & \sqrt{\left[m_{1}-m_{3}\right]_{q}\left[\beta+m_{1}+m_{2}\right]_{q}} f_{m_{1}-1, m_{2}, m_{3}} \\
X_{2} f_{m_{1}, m_{2}, m_{3}}= & \sqrt{\left[m_{2}+1\right]_{q}\left[\delta+m_{2}\right]_{q}}\left(\prod_{r=0}^{m_{1}-1} \frac{\left[\beta+m_{2}+r+2\right]_{q}}{\left[\beta+m_{2}+r+1\right]_{q}}\right)^{1 / 2} \times \\
& \left(\prod_{r=0}^{m_{3}-1} \frac{\left[\beta+m_{2}+m_{3}-r-1\right]_{q}}{\left[\beta+m_{2}+m_{3}-r+1\right]_{q}}\right)^{1 / 2} f_{m_{1}, m_{2}+1, m_{3}}+ \\
& \sqrt{\left[m_{3}\right]_{q}\left[\delta-\beta-m_{3}\right]_{q}}\left(\begin{array}{c}
m_{1}-m_{3}-1 \\
\prod_{r=0}
\end{array} \frac{[r]_{q}}{[r+1]_{q}}\right)^{1 / 2} \times \\
& \binom{\prod_{r=0}^{m_{2}-1}\left[\beta+m_{3}+r-1\right]_{q}}{\left[\beta+m_{3}+r+1\right]_{q}}^{1 / 2} f_{m_{1}, m_{2}, m_{3}-1}
\end{aligned}
$$

where $0 \leq m_{3} \leq m_{1}, m_{2} \geq 0,0 \leq m_{3} \leq s, \beta \geq 0, \delta=\beta+s+1$.
c) $\quad k_{1} f_{m_{1}, m_{2}, m_{3}}=q^{\left(\alpha-\beta+m_{3}-m_{2}-1\right) / 2+m_{1}} f_{m_{1}, m_{2}, m_{3}}$,

$$
k_{2} f_{m_{1}, m_{2}, m_{3}}=\quad q^{m_{2}-m_{3}+\left(\delta-m_{1}+1\right) / 2} f_{m_{1}, m_{2}, m_{3}}
$$

$$
X_{1} f_{m_{1}, m_{2}, m_{3}}=\sqrt{\left\{\alpha+m_{1}+m_{3}\right\}_{q}\left\{\beta-m_{1}+m_{2}\right\}_{q}} f_{m_{1}+1, m_{2}, m_{3}}
$$

$$
X_{2} f_{m_{1}, m_{2}, m_{3}}=\sqrt{\left[m_{2}+1\right]_{q} \frac{\left\{\delta+\alpha+m_{2}+1\right\}_{q}\left\{\beta+m_{2}+1\right\}_{q}}{\left[\alpha+\beta+m_{2}+1\right]_{q}}} \times
$$

$$
\left(\prod_{s=0}^{m_{1}-1} \frac{\left\{\beta+m_{2}-s\right\}_{q}}{\left\{\beta+m_{2}+1-s\right\}_{q}}\right)^{1 / 2} \times
$$

$$
\left(\prod_{s=0}^{m_{3}-1} \frac{\left[\alpha+\beta+m_{2}+s\right]_{q}}{\left[\alpha+\beta+m_{2}+s+2\right]_{q}}\right)^{1 / 2} f_{m_{1}, m_{2}+1, m_{3}}+
$$

$$
\sqrt{\left[m_{3}\right]_{q} \frac{\left\{\alpha+m_{3}-1\right\}_{q}\left\{\beta-\delta+m_{3}-1\right\}}{\left[\alpha+\beta+m_{3}\right]_{q}}} \times
$$

$$
\left(\prod_{s=0}^{m_{1}-1} \frac{\left\{\alpha+m_{3}+s\right\}_{q}}{\left\{\alpha+m_{3}+s-1\right\}_{q}}\right)^{1 / 2} \times
$$

$$
\left(\prod_{s=0}^{m_{2}-1} \frac{\left[\alpha+\beta+m_{3}+s-1\right]_{q}}{\left[\alpha+\beta+m_{3}+s+1\right]_{q}}\right)^{1 / 2} f_{m_{1}, m_{2}, m_{3}-1}
$$

where $\alpha+\beta \geq 0, m_{2} \geq 0, m_{3} \geq 0, m_{1} \in \mathbf{Z}$.
d) one-dimensional: $X_{i}=Y_{i}=0, k_{i}= \pm 1, \pm i$.
where $[\alpha]_{q}=\left(q^{\alpha}-q^{-\alpha}\right) /\left(q^{1}-q^{-1}\right),\{\alpha\}_{q}=\left(q^{\alpha}+q^{-\alpha}\right) /\left(q^{1}-q^{-1}\right)$
-Representations of $$-algebras A_{4}, A_{5} provided that $q>1$ can be also studied by the method of semilinear relations.

Definition $2 A$ collection of operators $k_{i}, X_{i}, Y_{i}\left(k_{i}^{*}=k_{i}^{-1}, X_{1}=X_{1}^{*}, Y_{2}=Y_{2}^{*}, X_{2}, Y_{1}\right.$ are symmetric) is called a representation of $s l_{q}(3, \mathbf{R}), q \in \mathbf{R}$ in a Hilbert space H if there exists a dence set $\Phi \subset H$ such that:
a) Φ is invariant with respect to $k_{i}, X_{i}, Y_{i}, E(\delta), \delta \in \mathbf{B}\left(\mathbf{R}^{2}\right)$, where $E(\cdot)$ is a joint resolution of indentity for the family of commuting selfadjoint operators X_{1}, Y_{2};
b) Φ consists of bounded vectors for the operators X_{1}, Y_{2};
c) relations (1)-(3) hold on Φ.

Theorem 2 For $q \in \mathbf{R}, q>1$, the *-algebra $\operatorname{sl}_{q}(3, \mathbf{R})$ has the following irreducible representations:

1) a one-dimensional: $X_{i}=Y_{i}=0, k_{i}= \pm 1, \pm i$;
2) an infinite-dimensional: in $l_{2}\left(\mathbf{Z}^{2}\right)=\left\{f_{k, m}\right\}$

$$
\begin{aligned}
& k_{1} f_{k, m}=f_{k-2, m-1}, \quad k_{2} f_{k, m}=f_{k+1, m+2}, \\
& X_{1} f_{k, m}=c_{1} q^{\frac{k}{2}} f_{k, m}, \quad Y_{2} f_{k, m}=c_{2} q^{\frac{m}{2}} f_{k, m}, \\
& X_{2} f_{k, m}=\frac{1}{c_{2} q^{\frac{m}{2}}\left(q-q^{-1}\right)^{2}}\left(f_{k+2, m}+f_{k-2, m}-q f_{k=2, m+4}-q^{-1} f_{k-2, m-4}\right), \\
& Y_{1} f_{k, m}=\frac{1}{c_{1} q^{\frac{m}{2}}\left(q-q^{-1}\right)^{2}}\left(f_{k, m+2}+f_{k, m-2}-q f_{k-4, m-2}-q^{-1} f_{k+4, m+2}\right),
\end{aligned}
$$

$c_{1}, c_{2} \in \tau=\left(-q^{\frac{1}{2}},-1\right] \cup\left[1, q^{\frac{1}{2}}\right)$.
Definition of the representations of $*$-algebra A_{5} for $q>1$ and list of all irreducible representations see in [11].

Remark 3 If $q \in \mathbf{T}$ and the operator k_{i}, X_{i}, Y_{i} are bounded, then one can easily show that all irreducible representations of $A_{i}, i=4,5,6$ are one-dimensional. The same is true for $*$-algebra A_{6}, when $q \in \mathbf{R}$. It is a problem what are "integrable" representations of such $*$-algebras for unbounded operators.

References

[1] Jimbo M., Quantum R matrix related to the generalized Toda system: an algebraic approach, Lect. Notes Phys., 1986, V.246, 334-361.
[2] Jimbo M., q-difference analogue of $U(n)$ and the Yang-Baxter equation, Lett. Math. Phys., 1985, V.10, 63-69.
[3] Drinfeld V.D., Quantum groups, Zap. Nauch. Sem. LOMI, 1980, V.115, 19-49.
[4] Ostrovskii V.L., Samoĭlenko Yu.S., Unbounded operators, satisfying non-Lie commutation relations, Reports Math.Phys., 1989, V.28, N 1, 91-104.
[5] Samoı̆lenko Yu.S., Shul'man V.S., Turovskaya L.B., Semilinear relations and their *-representations, Preprint, Augsburg, 1995.
[6] Klimyk A.U., Groza V.A., Representations of quantum pseudounitary algebras, Preprint ITF, Kiev, 1989.
[7] Vaysleb E., Infinite-dimensional *-representation of the Sklyanin algebra and the quantum algebra $U_{q}(s l(2))$, in Methods of Functional Analysis in Problems of Mathematical Physics, Math. Inst. Akad. Nauk Ukrain. SSR, Kiev, 1990, 50-63 (Russian).
[8] Twietmeyer E., Real forms $U_{q}(\mathbf{J})$, Lett. Math. Phys., 1992, V.24, N 1, 49-59.
[9] Bespalov Yu.N., Samoľlenko Yu.S., Shul'man V.S., On collections of operators connected by semilinear relations, In: Application of Methods of Functional Analysis in Mathematical Physics, Math. Inst. Akad. Nauk Ukrain. SSR, Kiev, 1991, 28-51 (Russian).
[10] Vaysleb E.Ye., Representations of quantum *-algebra $s l_{t}(N+1, \mathbf{R})$, Adv. Sov. Math., 1992, V.9, 57-65.
[11] Turovskaya L.B., Representations of some real forms of $U_{q}(s l(3))$, Algebras, groups and geometries, (to appear).

