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Abstract—In this work we propose the simulation of a PID 
controller to solve two problems, namely: 1) Recovery signal 
with perturbation, using Simulink. 2) Tracking signal for a 
motor with perturbation in two ways, using Simulink and 
using a Matlab program. The aim of this work is to show 
particular examples, where Simulink changes the expected 
behavior of the model. We emphasize the importance of 
numerical integration of differential equations and the 
bounded signals treatment 
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I. INTRODUCTION  
For seven decades PI and PID control structures have 

been used in control engineering practice [1-3]. The most 
usual PID control is the parallel controller structure 
designed by McMillan in 1990, which is used very 
frequently in many industrial controllers [3] to solve two 
important problems, one is the recovery of a signal and the 
other is the tracking signal of a motor. The development of a 
PID controller for a DC motor generally passes through a 
simulation stage, where the parameters of the system will be 
adjusted according to the limits of the hardware. If we work 
with trademark hardware, default parameters can simplify 
the implementation, like in the case of data acquisitions 
cards; however the trademark hardware usually contains 
hidden hardware corrector that works like a filter, amplifier 
or other control devices, producing changes in the controller 
model, i.e. the control actions are limited for using an 
unknown controller model.    

II. MOTOR MODEL 
We use the well known linear differential equation of 

second order with constant coefficients for describing the 
D.C. motor: 

Vi = Ri  [ J ( dω(t)/dt)  + B  X ω(t)] / Kp 
   + Li [ J ( dω2(t)/dt) + B X  (dω(t)/dt)] / Kp                (1)                                        

Where X denotes the cross product of vectors, Vi is the 
induced voltage of the rotor, Kb is the back emf, ω(t) is the 
angular velocity, Ri is the resistance of the rotor, Ii is the 
armature current, Li is the inductance of the rotor, Kp is the 
electromagnetic torque constant, J is the inertia momentum 
and B the viscous friction coefficient. Assuming that Li is  
When we used the Simulink structure of Figure 1, a Matlab 
warning appears, advising of an algebraic loop as a 

consequence of using an ordinary differential equation 
instead of a delay differential equation, where the delay is 
produced by the feedback loop. We solved this problem by 
putting a memory block before the feedback amplifier [6], 
where the parameters of the memory block depends upon 
the size of the delay and the processing time of the 
controller.  

A. Recovery signal with perturbation 
For problem 1, with a sine input signal of magnitude 1 

and frequency of 0.5 rad/sec., with PID controller 
parameters Kp=0.5, Kd=0.9, Ki=0.9, output amplification 
constant of 10, feedback amplification constant of 1 and 
without feedback delay and white noise with default values 
and a constant of magnitude 0.5 as perturbation, we 
obtained figure 2 using the data generated in Matlab 
workspace. When a signal is recovered with a PID 
controller with white noise perturbation, we expected a 
phase change and persistence of white noise in the output 
signal, however is observed in figure 2 that does not occur.  
We ran the same problem introducing a feedback delay and 
we obtained the expected changes.  

For problem 1, with a square input signal of magnitude 1, 
frequency of 0.5 rad/sec and pulse width of 50% of the 
period, with PID controller parameters Kp=0.5, Kd=0.9, 
Ki=0.9, output amplification constant of 10 and without 
feedback delay and white noise using default values and a 
constant of magnitude 0.5 as perturbation, we recovered the 
input signal only with a difference in magnitude, no matters 
which solver, step, value of maximum step and perturbation 
signal had been chosen; the difference between the output 
signal and the input signal is never greater than 10% in 
width and is never greater than 7.0% in magnitude. We ran 
the same problem with the same parameters changing the 
output amplification constant to 100, recovering the input 
signal as it was expected.  
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Figure 1.  Control behavior with white noise and without delay feedback. 

Finally, we recall that the white noise signal in Simulink 
is produced by a bounded pseudo-random numbers generator 
[6], where the bound is not symmetrical respect to the x axis and 
each value endures more than one sampling time, allowing 
the controller to diminish the difference between the input 
signal and the output signal in a soft way while the white 
noise value is the same. 

B. Tracking  signal in a motor with perturbation 
1) Using Simulink: For problem 2, with a sine input 

signal of magnitude 1 and frequency of 0.5 rad/sec., with 
PID controller parameters Kp=0.5, Kd=0.3, Ki=0.9, output 
amplification constant of 1, feedback amplification constant 
of 1 and without feedback delay and constant of magnitude 
0.5 and a decreasing monotone signal in the interval [1.00, 
1.06], generated by (2) with minimum value of -0.74 as 
perturbation.  
               P(t) =( 0.04*Sin(t)/ 0.04*Sin(t+pi)) + 625        (2) 

We obtained the same results as in the problem 1 in A, 
but the presence of errors depends on the integrator, for 
example, we found that the output signal is equal to the 
input signal with the stiff solver Ode23t, variable step, 
maximum step of 0.001, value of 1000 in the output control 
amplification and delay feedback.  

For problem 2, with input and perturbation sinusoidal 
signals, we obtained the same results as in the problem 1 in 
A.  

For problem 2, with a square signal of magnitude 1 and 
frequency of 0.5 rad/sec as input and perturbation signal, 
where the input signal is produced by a different source than 
the source that produces the perturbation signal, and with 
feedback delay, we obtained, after many numerical 
experiments, that the best tuning of the PID controller 
parameters were: Kp=0.3, Kd=0.001, Ki=0.4, output 
amplification constant of 0.1, feedback amplification 
constant of 10 and using the data generated in Matlab 
workspace we obtained figure 3. 
 
 

 
Figure 2.  Motor model with same signal and perturbation. 

We can see in figure 3 that the output signal has not a 
square form, therefore is useless in a tracking signal process; 
however the output signal still can be useful in recovery 
signal, for the case of electronic D.C. amplifiers, which use 
digital inputs.      

Finally, in Simulink we can use values like 0.1 in one or 
more parameters, which are multiplied many times during 
the simulation, without observing the typical behavior for 
using truncated binary numbers [7].   

2) Motor model with P and PID control via Matlab. If 
we write a Matlab program to simulate the classical PID control 
structure, there are some differences with Matlab Simulink 
because we need to specify the way to obtain the derivative of the 
error; the integration of the error, the time delay, and how to 
compare the input signal with the feedback signal. Moreover we 
can change the sampling times for different intervals of time 
according to the performance of the structure.  

It is very conspicuous that the obtained results with Simulink 
have in general such a nice behavior. This made us wonder if we 
can obtain the same results by using our own code. Since 
Simulink uses the subroutines of Matlab, one could write his own 
Matlab program, expecting to obtain the same results. 

We simulated a PID controller with a Matlab program 
with a sinus input signal, with sampling time of ((2*pi)/100) 
seconds. We took the derivative error value at xi as the slope 
of the straight line that passes through the points of the error 
signal at (xi, e(xi )) and (xi-1, e(xi-1)). We took the integral 
error value at xi as the result of trapezoidal integration in the 
interval [xi, xi-1], with 30 subintervals for the method. Using 
the same parameters used in Simulink for the problem 2 
with a sinusoidal signal and constant of magnitude 0.5 as 
perturbation, we obtained very different results, for example, 
the output signal grew excessively in magnitude, this 
behavior is a consequence of some divisions by small 
denominators; therefore we must have a criterion to avoid 
zero crossings, by mean of the integration step or averaging 
the boundary values in the intervals that present these 
behaviors. Also we observed in every run, some points 
where the values of the magnitude are too big, it is not 
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exclusive for the output signal; thus it is necessary to handle 
saturations limits for the signals.  

TABLE I.  SIMULATIONS CHARACTERISTICS OF PID CONTROLLER 

Sampling  
time 

Time without big 
Oscillations (sec) 

Sampling  
time 

Time without big
Oscillations (sec)

0.0010 
0.0628 
0.0625 
0.1000 
0.1250 

0 
65 
65 
85 
90 

0.2500 
0.5000 
0.7500 
1.0000 

increase 

100 
110 
19 
60 

decrease 
Kp=1.1, Kd=0.05, Ki=0.02, Feedback Amp. =0.06 and Output Amp. =1

 
Figure 3.  Motor model with PID control via Matlaback 

In the case of integration and derivation, we should also 
consider the sampling time as our first parameter for 
discriminate if it is necessary to use different regions of 
sampling and choose a numerical integration method and a 
derivation method according to the model [8]. 

We tuned many times to obtain the closer output signal to 
the input signal, founding these PID controller constants: 
Kp=1.1, Kd=0.05, Ki=0.02, feedback amplification constant 
of 0.06 and any output amplification constant greater than 1. 
With those parameters we assure that the output signal 
remains at least 65 seconds without oscillations, except the 
one shown on the figure 4. But the output always presents 
offset and its magnitude is around 50% less than the desired. 
Table 1 shows a comparison for different sampling times. 

We simulated a P controller, with a Matlab program, to 
show how even without including the integral and derivative 
controls, is not possible to avoid big oscillations in problem 
1, even without white noise, when is used a sine signal as 
input with sampling time of ((2*pi)/100) seconds and 
without perturbations. After many numerical experiments 
the best tuning of the P controller parameters were 0.1< 
Kp<1.1 and feedback amplification constant equal to 1, 
where the output amplification constant is included in the 
constant Kp. With this tune the output signal never presents 
offset in phase, but its magnitude is always around 50% less 
than the desired value and we assured an output signal with 
at least 120 seconds without oscillations. 

Besides we obtained one example with Kp= 0.1 which 
presents oscillations after 1 second maintaining the rest of 
the parameters without changes.  

Finally if the signals are developed in series is necessary 
to take into account the number of terms in the series that 
represent the signal without loss of important information. 
In some cases Lanczos filter can help to reduce time [9]. For 
stochastic signals, as the white noise, the Stratonovich 
integral is used, because of its nice characteristics [10]. 

III. ALIASING 
One usually thinks that the aliasing problem in PI and 

PID control is only presented in the generation of signals 
[11]. However this problem appears also in the numerical 
integration [12] and in the recovery of signals. Particularly 
in communications systems, the Fourier series and Fourier 
transform [13] are tools to generate or recover signals from 
cardinal series. The aliasing phenomenon in Shannon 
sampling reconstruction procedure has been discussed in 
numerous papers [14-16]. The presence of aliasing in the 
generation of signals often is associated to truncated cardinal 
series [14]. FFT does not corrects the aliasing problem, only 
diminishes the CPU time [17]. In this work we used the 
Lanczos sigma factors to reduce the number of steps in the 
generation of square signals [18]. We chose the sigmoidal 
sigma factor form as in (3), because this reduces or at least 
maintains the CPU time of the problems that we ran before. 
In this equation α is a variable that depends directly of 
sample time. 

               σ  =  sinc ((π*x) / α*m)                        (3) 
 

When the signals are not square (3) can help only in a few 
cases, thus inclusion of these sigma factors is based just on 
heuristic knowledge.   

Finally, when the sampling time is smaller than the time to 
build the integration or derivation of the error signal, we could 
obtain a false signal, whether square or not [8]. 

IV. CONCLUSIONS 
We have simulated PID controllers on Matlab Simulink 

and also using a Matlab program. We showed that the 
simulations with Simulink can present discrepancies with 
the theoretical expected results [19]. We showed how the 
complexity increases in direct relation with the number of 
specifications that the Matlab program requires. We 
presented examples and explanations about how is not  
possible to cancel a white noise perturbation just tuning the 
parameters in the structure, and how for this and other 
problems that present values that increase in excess, the way 
to solve the problems can be using saturations limits for the 
signals, for example with filters or using bounded signals. We 
showed that the motor model presented is changed, either by 
assuming small delays when they are big, to choose wrong 
differential equations solvers, hidden filters or ignore 
predetermined actions of the hardware devices or software 
packages used in the controller system. Besides, we showed 
that the aliasing phenomenon is not exclusive of the 
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construction of square signals by means of cardinal series 
and also can be presented in the numerical integration.       

Finally we showed that the controller performance changes, 
when we avoid the compute intervals with values that tend to 
indeterminate the numerical integration, of the differential 
equations used by the solver. 
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