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Abstract—This paper aimed to improve the performance of a 
7-DOFs arm exoskeleton in position measurement, so that it 
can be used for applications that require high-accuracy 
tracking ability, such as robot navigation. A data fusion 
method with an inertial measurement unit(IMU) using Kalman 
Filter is developed. With proper setup of the system the result 
of experiments show a significant improvement in position 
accuracy of the exoskeleton.  
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I. INTRODUCTION 
Arm exoskeleton is an external mechanical device worn 

by human arm. It is widely employed in tele-operation, 
rehabilitation and strength enhancement [1], [2], [3], [4]. The 
control accuracy of the exoskeleton is very important in 
certain applications such as robot tele-operation. However, 
due to the manufacturing error and accumulate error the 
series structure, the end position and orientation detected by 
the exoskeleton can’t reach the high demand of those 
applications. Thus, we proposed a data fusion method using 
an IMU to improve the accuracy of the exoskeleton. 

Inertial measurement units (IMUs) are electronic devices 
that measures velocity, orientation, and gravitational forces, 
using a combination of accelerometers and gyroscopes, 
sometimes also magnetometers. With the advantages of low 
cost, light weight, and fast response, they are widely used for 
navigation of vehicle/aircraft and human motion detection 
[5], [6], [7]. IMU has good short-term precision and high 
sampling rates, but it suffers from serious errors in long-term 
position and orientation estimates due to the drift and the 
algorithm of integration[8]. It has already been used to 
improve the performance of a GPS-based navigation system 
in terms of dynamic behavior, synchronization, and 
reliability [9], [10], [11]. 

Multi-sensor data fusion become increasingly popular in 
industry and scientific research. Besides the applications of 
GPS-based navigation system. There are also several multi-
sensor systems that combine optical tracking system (OTS) 
and IMU developed for surgical navigation, user tracking in 
augmented reality, and human motion detection [12], [13], 
[14]. Kalman filter is a common fusion algorithm for multi-

sensor data fusion, which is implemented in the proposed 
method for data fusion of the exoskeleton and IMU. 

II. SYSTEM SETUP 

A. Exoskeleton system 

 
Figure 1.  Structrue of the exoskeleton. 

The proposed exoskeleton is designed especially for 
robot tele-operation. There are 7 joints from shoulder to wrist, 
each joint is equipped with an optical encoder which has an 
resolution of 12 bits. In order to simplify the mechanism, 
there is no driven joint which also reduce the weight and cost 
of the exoskeleton. The links are designed to be adjustable 
for different operators. In the end of the exoskeleton, there 
are a joystick with buttons for the control of the robot and a 
tool clamper for different tools. With all this optimized 
mechanism, the total weight of the exoskeleton is reduced to 
2kg. 
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With forward kinematics of the exoskeleton, the position 
and orientation of the exoskeleton’s end can be calculated 
using the joint angles provided by the encoders  

B. IMU system 

 
Figure 2.  Xsens MTi inertial measurement unit. 

An MTi (Xsens Technologies B.V., Enschede, The 
Netherlands) inertial measurement unit is used in our system, 
as shown in Fig. 2. It consists of a 3D MEMS acceleration 
sensor, a 3D MEMS gyroscope, and a 3D earth-magnetic 
field sensor. The IMU can provide the calibrated 
accelerations in 3 axes with gravity and the rates of turn in its 
body frame ( ) imuCF . With a combination of earth-magnetic 
field sensor, the IMU is able to provide the orientation of the 
IMU in the world’s coordinate frame with an accuracy of 0.1 
degree. Unfortunately, the pose estimated by IMU cannot be 
trusted in our case as the electric signals disturbs the 
magnetic field sensor. Thus, only the accelerations and the 
rates of turn are used in our research: 

 ( ) [ , , , , , ]imu x y z x y za a aε ω ω ω=  (1) 

 The IMU’s maximum sample rate is 512 Hz. 

III. DATA FUSION 

A. State Models 
To track the tool at the EE of the robot, both position and 

orientation have to be estimated by the Kalman Filter. The 
data acquired from the introduced measurement sensors are 
given in different coordinate frames, viz. coordinate frame of 
the exoskeleton ( ) exoCF and coordinate frame of the IMU 
( ) imuCF  The former is treated as the world’s coordinate 
frame ( ) exoCF . 

The acceleration data provided by IMU contains the 
gravitational acceleration g. Before using it for estimation, a 
compensation of gravitation terms g should be achieved: 

   ( ) ( ) ( ) -exo
p imu imux t R t x t g=&& &&  (2) 

On the other hand, the turn rate provided by IMU also 
needs to be converted into the coordinate frame of OTS: 

 ( ) ( ) ( )exo
o imu imux t R t x t=& &   (3)  

As a result, the position estimation not only takes the 
object’s acceleration into account, but also the orientation 
matrix ( )ots

imuR t  at time t. Thus, a separate determination of 
the position and the orientation state space model is required. 
The classical differential equation for translation with 
acceleration and rotation with constant turn rate is: 

 2 2ini
p p p px x x t x t= + +& &&  (4) 

ini
o o ox x x t= + &  (5) 

Thus, the state space vectors separated with position and 
orientation of the model are created as follows:  
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According to the classical differential equation for 
translation with acceleration and rotation with constant turn 
rate, the discretized transition equations of state space 
models concerning position as well as orientation result to 
exemplarily for one dimension: 
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Where TΔ  is the sample time of the discretization. 

B. Measurement Models 
According to the data provided by the IMU and 

exoskeleton, the equations for the measurement models of 
position and orientation are: 
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where the position and the orientation ( )px k , ( )ox k  
are measured by exoskelton, and the acceleration and the 
turn rate ( )px k&& , ( )ox k&  are measured by IMU. Although 
the velocity ( )px k&  can be estimated by the Kalman filter in 
the state model, the integration of acceleration will cause a 
great cumulative error. Thus, the measurement value of the 
velocity ( )px k&  is also provided in the measurement model 
using the measurement value of the position, and the 
measurement noise covariance of velocity is estimated using 
the measurement noise covariance of position. 

C. Kalman Filter 
Kalman filters are widely used in sensor fusion 

applications. By data fusion with an IMU using a Kalman 
filter, we are expecting to improve the performance of an 
arm exoskeleton. 

Based on the state models and measurement models, the 
following linear time-invariant stochastic difference 
equations, which represent the estimation and the 
measurement, are used to implement the Kalman filter: 

 ( ) ( ) ( 1) ( )x k T x k kω= Φ − +  (12)

 

 ( ) ( ) ( )y k Cx k kυ= +  (13)

 
where ( )kω  and ( )kυ  account for process and 

measurement noise, respectively. They are assumed to be 
drawn from a zero mean multivariate normal distribution 
with covariance ( )Q k  and ( )R k .  

IV. EXPERIMENT AND RESULTS 

A. Expriment Setup 
As shown in Fig. 3, the IMU is equipped at the end of the 

exoskeleton. The performance of the proposed method is 
evaluated by an experiment using an OTS with six cameras. 
The OTS which is much more accurate than the exoskeleton 
is used as a reference. The trajectory of exoskeleton’s end 
detected by exoskeleton system and data fusion system are 
both compared with the trajectory detected by the optical 
tracking system. 

 
Figure 3.  Experiment setup. 

B. Result 
Fig. 4 shows the acceleration noise of IMU after the 

compensation of gravity. Fig. 5 and Fig. 6 show the result of 
exoskeleton and data fusion compare with OTS, which 
indicate that the data fusion system has better performance 
than the exoskeleton system. 

 
Figure 4.  Acceleration noise of IMU. 
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Figure 5.  Result of exoskeleton. 

 
Figure 6.  Result of data fusion. 

V. CONCLUSION AND DISCUSSION 
A method to improve the performance of an arm 

exoskeleton using data fusion with an inertial measurement 
unit was proposed. After the description of the system, the 
data fusion method was described in detail. The capability of 
the developed approach was proved by experimental results. 
In the proposed method, the noises of the sensor systems are 
treated as zero mean, Gaussian and white, thus Kalman filter 
is used for data fusion. However, considering the influence 
factors to the error of the exoskeleton, the exoskeleton 
system may not be treated as linear. For further studies, non-
linear filters, such as extended Kalman filter, are 
recommended for data fusion. 
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