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Abstract

Necessary and sufficient conditions are found that the n-order nonlinear and nonau-
tonomous ordinary differential equation could be transformed into a linear equation
with constant coefficients with the help, generally speaking, nonlocal transformation
of dependent and independent variables. These conditions are expressed in termes of
factorization through first order nonlinear differential operators. Examples are con-
sidered also.

”Two subjects that are theoretical physics and inte-
gration of differential equations, are quitely impossi-
ble one without another, were always developing to-
gether, and the success of one of them influenced an-
other”

(V.P. Ermakov)

1 Introduction

While seeking for the reason of progress and failures in ODE integration, the author
concluded that the key to understanding the integrability problem is in a couple of words:
factorization and transformations.

Today is already undestood the necessity to use the corresponding deep analogies
between algebraic and differential equations, and, especially, those connected with the
possibilities of factorization. But the greatest importance is in understanding the necessity
of mutual using of the factorization and transformation methods. Being used each one
alone, they are not so effective. But using both of them together gives the maximal profit
because the sum effect is greater than of each one alone.

In relation with going now de-linearization of Science, in general, and Physics,
especially it looks actual to develop the already known and creating new mathematical
methods of linearization of the differential equations.

The main result. Theorem 1.1. In order the equation

F (x, y, y′, ..., y(n)) = 0 (1.1)
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to admit a transformation

y = v(x, y)z, dt = u1(x, y)dx+ u2(x, y)dy, (1.2)

(where v, u1 and u2 are sufficiently differentiable functions in some domain G(x,y), which
are not annuled in it), to a linear autonomous form

z(n)(t) + bn−1z
(n−1)(t) + ...+ b1z

′(t) + b0z(t) = 0, bk = const, (1.3)

it is necessary and sufficient that (1.1) allow a noncommutative factorization

F ∼
1∏

k=n

[
D − vx + vyy

′

v
− (k − 1)

D(u1 + u2y
′)

u1 + u2y′
− rk(u1 + u2y

′)
]
y = 0, (1.4)

or a commutative factorization

F ∼
n∏

k=1

[
1

u1 + u2y′
D − vx + vyy

′

v(u1 + u2y′)
− rk

]
y = 0, (1.5)

through the nonlinear differential first order operators with D = d/dx, and rk being roots
of the characteristic equation

rn + bn−1r
n−1 + ...+ b1r + b0 = 0. (1.6)

See the special cases of Theor.1.1 in [1, 2]; by using it the Halphen problem about
the reducible linear n-th order differential equation was solved [1]. It was used also for
linearization of autonomous equations [2]. Other possible applications of this theorem are
a research of integrable cases of the Newton equation,

y′′ = f(x, y, y′), (1.7)

other nonlinear equations, and, particularly, autonomization of non-autonomous equa-
tions.

Relations (1.2) include the following important transformations: Kummer-Liouville
transformation

y = v(x)z, dt = u(x)dx, v, u ∈ Cn(I), uv 6= 0, ∀x ∈ I = {x | a ≤ x ≤ b}; (1.8)

general point linearization

X = f(x, y), Y = ϕ(x, y),
∂(X,Y )
∂(x, y)

= XxYy −XyYx 6= 0, (1.9)

that corresponds (1.2) for u1y = u2x; fibre-preserving point linearization

X = f(x), Y = ϕ(x, y); (1.10)

linearization of nonlinear autonomous equations

y = v(y)z, dt = u(y)dx, u(y(x))v(y(x)) 6= 0, ∀x ∈ I = {x | a ≤ x ≤ b}; (1.11)
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i.e., linearization in the restricted sense; linearization

y = v(x, y)z, dt = u(x, y)dx, (1.12)

which corresponds to a point Lie symmetry with the generator

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
; (1.13)

and general non-point linearization (1.2), i.e., linearization in the broad sense.
Let us note that if one performs factorization according to (1.4) or (1.5), then the class

of linearizable by (1.2) equations keeps its form under different transformations (1.2). This
allows us to formulate for the equations (1.1) the problem of transformation to themselves
or to some given form with another structure, and of reduction to canonical forms as well.

By this way, the ODE integrability problem leads us to the necessity of reseaching
such a general problem as equivalence of different classes. The corresponding problem for
a n-th order LODE was solved in [1, 3, 4] with usage of the KL-transformation.

2 Linearization of the second-order autonomous equations

The linearization with the help of transformation of a desired function was applied in [5]
and of an independent variable in [6]. In [2], a general class of nonlinear autonomous
equations of the second order is constructed, dependent on two arbitrary functions, which
being linearized under the condition of combined using transformations of both kinds.

Theorem 2.1 [2]. In order for the equation

y′′ + f(y)y′2 + b1ϕ(y)y′ + ψ(y) = 0, y′ =
dy

dx
, (2.1)

to be linearized by transformation (1.11), i.e., reduce to the form

z̈ + b1ż + b0z + c = 0, ż =
dz

dt
, (2.2)

b1, b0, c = const, it is necessary and sufficient that it should be presented in one of the
following forms

y′′ + fy′2 + b1ϕy
′ + ϕ exp

(
−
∫
f(y)dy

) [
b0

∫
ϕ exp

(∫
f(y)dy

)
dy +

c

β

]
= 0, (2.31)

y′′ −
(

2a
ay + b

+
ϕ∗

ϕ

)
y′2 + b1ϕy

′ +
b0
b
ϕ2y(ay + b) +

c

b
ϕ2(ay + b)2 = 0, ϕ∗ =

d

dy
, (2.32)

β = const is a normalizing factor. Moreover, equations (2.3) reduce to the form (2.2) by
the transformations

z = β

∫
ϕ exp

(∫
fdy

)
dy, dt = ϕ(y)dx, (2.41)

z =
y

ay + b
, dt = ϕ(y)dx, (2.42)
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Example 1. We shall find conditions of integrability in finite terms for the equation

y′′ + yy′ + ky3 = 0, k = const, (2.5)

which, besides the theory of univalent functions being in integrals of second-order nonlinear
ordinary differential equations (NODE-2) [7], arises also in a number of other theoretical
and applied questions [8].

Theorem 2.2. 1) Equation (2.5) is resolved in quadratures for any k, since by a substi-
tution

z = y2, dt = ydx, (2.6)

it is linearized: z̈ + ż + 2kz = 0.
2) In order for equation (2.5) to be integrated in finite terms through elementary func-

tions, it is necessary and sufficient that parameter k admits the values

k =
l(l + 1)

2(2l + 1)2
, l ∈ Z, k ∈ [0,1/8]. (2.7)

3) For k 6= 1/9 equation (2.5) admits a two-dimensional Lie algebra with the generators

G1 =
∂

∂x
, G2 = x

∂

∂x
− y

∂

∂y
, [G1, G2] = G1. (2.8)

4) For k = 1/9 equation (2.5) admits a Lie algebra, isomorphic to sl(3,R).
For integration of equation (2.5), the method of exact linearization Chebyshev [9] for

integration of differential binomials is applied.

Remark 1. The similar results were obtained in [8] due to a combination of a standard
method of point Lie symmetries with the so–called method of hidden Lie symmetries [10]
as well as with the test of Painleve-Kovalevsky. Generalization of the equation (2.5) is
included in a Ex.4.

Remark 2. Let the dynamic system be described by equations of the form

ẏ1 = P (y1, y2), ẏ2 = Q(y1, y2). (2.9)

Some special cases of (2.9), including a classical system of Lotka - Volterra, are reduced
by exception of a variable either to equations of the form (2.31) or to equations, equivalent
(2.31).

Example 2. A linearization of Liouvillian systems.
It is known that kinetic and potential energies corresponding to these systems have the
form

T =
1
2
b(q)

n∑
i=1

ai(qi)q.2
i , U =

1
b(q)

n∑
i=1

di(qi), b(q) =
n∑

i=1

bi(qi). (2.10)

Using the Lagrange equations

d

dt

(
∂T

∂q.
i

)
− ∂T

∂qi
=
∂U

∂qi
, i = 1, ..., n, (2.11)
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and the expression for the integral of energy T − U = h obtained from (2.10), we shall
come to the following system of second-order differential equations

q̈i +

(
1
2
a∗i
ai
q̇i +

ḃ

b

)
q̇i −

1
b2ai

d

dqi
[bi(h− di)] = 0. (2.12)

Theorem 2.3. Liouvillian system submitted in Lagrange form (2.12) is linearized by the
transformation

Qi =
√

2(hbi − di), dsi = −a−1/2
i b−1 d

dqi

√
2(hbi − di)dt (2.13)

to the form
Q′′

i (si)−Qi(si) = 0. (2.14)

3 A linearization of third-order autonomous equations

Consider the equation

y′′′ + f5(y)y′y′′ + f4(y)y′′ + f3(y)y′3 + f2(y)y′2 + f1(y)y′ + f0(y) = 0. (3.1)

By transformation of the type (1.11), it is reduced to the form

...
z + b2z̈ + b1ż + b0z + c = 0, b2, b1, b0, c = const. (3.2)

The separate examples of the type (3.1) were considered in [11].

Theorem 3.1. In order for the equation (3.1) to be linearized by transformation (1.11),
it is sufficient that (3.1) be presented in one of the following forms:

y′′′ + f(y)y′y′′ +
1
9

(
3
ϕ∗∗

ϕ
− 5

ϕ∗2

ϕ2
− f

ϕ∗

ϕ
+ f2 + 3f∗

)
y′3 + b2ϕy

′′ +
1
3
b2ϕ

(
f +

ϕ∗

ϕ

)
y′2+

b1ϕ
2y′ + ϕ5/3

(
b0

∫
ϕ4/3 exp

(1
3

∫
fdy

)
dy +

c

β

)
exp

(
−1

3

∫
fdy

)
= 0; (3.3)

y′′′ −
(

6a
ay + b

+ 4
ϕ∗

ϕ

)
y′y′′ + b2ϕy

′+

[6
a2

(ay + b)2
+ 6

a

ay + b

ϕ∗

ϕ
+ 3

ϕ∗2

ϕ2
− ϕ∗∗

ϕ
]y′3−

b2ϕ

(
ϕ∗

ϕ
+ 2

a

ay + b

)
y′2 + b1ϕ

2y′ +
b0
b
ϕ3y(ay + b) +

c

b
(ay + b)2ϕ3 = 0. (3.4)

The equations (3.3) and (3.4) are resulted to (3.2) by transformations

z1 =
∫
ϕ4/3 exp

(1
3

∫
fdy

)
dy, dt = ϕ(y)dx; (3.5)

z2 =
y

ay + b
, b 6= 0, dt = ϕ(y)dx. (3.6)
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Example 3. Case of Euler-Poinsot in a problem of a rotation of a rigid body
around a fixed point.

As is known, this problem is deseribed by the system

Aṗ−(B−C)qr = 0, Bq̇−(C−A)rp = 0, Cṙ−(A−B)pq = 0, A,B,C = const. (3.7)

The system (3.7) admits a separation of variables. If we eliminate variables q, r, we’ll come
to the next equation of the third order

y′′′ − 1
y
y′y′′ − 4(A−B)(C −A)

BC
y′y2 = 0, (3.8)

where t→ x, p→ y (.) → (′).
The equation (3.8) belongs to a special case of class (3.3). Namely, if in (3.3) we put

f = −ϕ
∗

ϕ , we shall come to the equation

y′′′ − ϕ∗

ϕ
y′y′′ + b2ϕy

′′ + b1ϕ
2y′ + ϕ2

(
b0

∫
ϕdy +

c

b

)
= 0. (3.9)

We shall make further simplifications. If now in (3.9) we set ϕ = y, b2 = b0 = c = 0,
we shall come to equation (3.8). Equation (3.8) is linearized by transformation (2.6):

y′′′ + by′ = 0, b =
4(A−B)(C −A)

BC
> 0. (3.10)

4 Point linearization of nonautonomous equations
of the second-order and general method
of an exact linearization

4.1. Point linearization

It was S. Lie who described a class ([12], see also [13, 14]) of ODE (1.7) linearized by a
point change of variables (1.9), namely, reduced to the form

d2Y

dX2
= 0. (4.1)

Theorem 4.1. General form of the second-order nonlinear equation reduced to the linear
form

d2Y

dX2
+ b1

dY

dX
+ b0Y + c = 0, b1, b0, c = const, (4.2)

by point transformation (1.9) is following:

(fxϕy − ϕxfy)y′′ +
[
(fyϕyy) + b1ϕyf

2
y + (b0ϕ+ c)f3

y

]
y′3+[

fxϕyy − ϕxfyy + 2(fyϕxy − ϕyfxy) + b1(ϕxf
2
y + 2fxfyϕy) + 3(b0ϕ+ c)fxf

2
y

]
y′2+[

fyϕxx− ϕyfxx+ 2(fxϕxy − ϕxfxy) + b1(2fxfyϕx + f2
xϕy) + 3(b0ϕ+ c)f2

xfy

]
y′+

(fxϕxx − ϕxfxx) + b1ϕxf
2
x + (b0ϕ+ c)f3

x = 0. (4.3)
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Example 4 (the generalization of Ex.1).

y′′ + ayy′ +
1
2
by3 = 0. (4.4)

Equation (4.4) for b = 2
9a

2 is linearized and reduced to the form (4.3) by the substitu-
tion

X =
1
3
ax− 1

y
, Y =

1
6
ax2 − x

y
. (4.5)

For comparison we shall note that (4.4) with any a and b is linearized by the substitu-
tion (1.11) to the form z̈ + aż + bz = 0. Equations of form (4.4) occur also in theoretical
and mathematical physics (see [15]).

A special case of transformation (1.9) is the fibre-preserving point linearization (1.10).

Theorem 4.2 [16]. For the second-order ODE (1.7) to admit a six-dimensional Lie group
of fibre-preserving point symmetries, it is necessary and sufficient that it have the form

y′′ =
1
2
Myy

′2 +Mxy
′ +N, (4.6)

where M(x, y) and N(x, y) satisfy to the underdetermined equation

Mxxy + (NMy)y −MxyMx − 2Nyy = 0. (4.7)

Theorem 4.3. In order for equation (1.7) to be reduced to (4.3) by transformation (1.10),
it is necessary and sufficient that the following conditions be executed:

F = f2(x, y)y′2 + f1(x, y)y′ + f0(x, y), (4.8)

where
∂f1

∂y
= 2

∂f2

∂x
, (4.9)

f0 =
1
2
e
∫

f2∂y
∫
e−
∫

f2∂y
(
∂f1

∂x
− 1

2
f2
1

)
∂y. (4.10)

Theorem 4.4. In order for the equation (1.7) to be linearized to a form (4.1) by trans-
formation (1.10), it is necessary that a new independent variable X be a linear-fractional
function of the old independent variable, i.e.,

X = f(x) =
ax+ b

cx+ d
, ad− bc = 1. (4.11)

4.2. General method of an exact linearization

The method an exact linearization of autonomous equations considered in sections 2,4
is particular (linearization in the restricted sense) in relation to the following general
method of a linearization of nonautonomous equations (linearization in the broad sense).
The transformation used has a form (1.2), where v, u1 and u2 are at least twice differen-
tiable functions of both arguments at any point (x, y) of some domain G, v(u1 +u2y

′) 6= 0,
∀(x, y) ∈ G.
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As the base of the method can served the following theorem, which is the specialization
of Theor.1.1 for order n = 2.

Theorem 4.5. In order for the equation of Newton (1.7) to reduce to the linear form
(4.2) by transformation (1.2), it is necessary that it admits the commutative factorization:[

1
u1 + u2y′

D − vx + vyy
′

v(u1 + u2y′)
− r2

] [
1

u1 + u2y′
D − vx + vyy

′

v(u1 + u2y′)
− r1

]
y + cv = 0, (4.12)

or noncommutative factorization:[
D − D(u1 + u2y

′)
u1 + u2y′

− vx + vyy
′

v
− r2(u1 + u2y

′)
] [
D − vx + vyy

′

v
− r1(u1 + u2y

′)
]
y+

c(u1 + u2y
′)2v = 0, D =

d

dx
, (4.13)

where rk, k = 1, 2, satisfy the characteristic equation

r2 + b1r + b0 = 0. (4.14)

5 Semilinear equations, corresponding to nonlinear
evolution equations of diffusion type

A search for self-similar, in particular, invariant solutions of travelling-wave a type is one
of main sources of appearance of nonlinear ODEs.

An important class of nonlinear equations is the so-called class of semilinear equa-
tions representable in the form of a sum of linear differential expressions with constant
coefficients and nonlinear termas.

The Kolmogorov-Petrovskii-Piskunov equation (KPP) is a nonlinear diffusion equation
of the form

∂u

∂t
= k

∂2u

∂x2
+ F (u), k = const, (5.1)

where a nonlinear function F (u) satisfies the conditions

F (0) = F (1) = 0, F ′(0) = α > 0, F ′(u) < α, 0 < u < 1, (′) = d/du. (5.2)

It was considered in [17] in connection with a problem of finding invariant solutions of
travelling wave a type u(x, t) = u(τ), τ = ax+ bt.

5.1. Group-theoretical properties of the semilinear KPP equation

We shall find point symmetries of a semilinear ODE corresponding (5.1), which we present
in the form

y′′ + b1y
′ + Φ(y) = 0. (5.3)

Theorem 5.1. In order for equation (5.3) to admit a point symmetry (one-parameter Lie
group) with generator (1.13), where X 6= ∂

∂τ , it is necessary and sufficient that Φ(y) and
X should take one of the following respective forms:

1) Φ(y) = b0F (y) = r1r2

[
y∗ +

s

r1r2
y∗(2r2−r1)/r1

]
,
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X = e(r1−r2)x

[
∂

∂x
+ r1y

∗ ∂

∂y

]
;

2) Φ(y) = b0F (y) = r1r2

[
y∗ +

s

r1r2
y∗(2r1−r2)/r2

]
,

X = e(r2−r1)x

[
∂

∂x
+ r2y

∗ ∂

∂y

]
,

where y∗ = y + q/(r1r2)

3) Φ(y) = q + s exp(2b21y/q), q 6= 0

X = eb1x
(
∂

∂x
− q

b1

∂

∂y

)
, b0 = 0; b1 6= 0;

4) Φ(y) = s(y + q)−1, X = e−b1x
(
∂

∂x
− b1(y + q)

∂

∂y

)
;

5) Φ(y) = b0F (y) = b0

[(
y +

q

b0

)
+

s

b0

(
y +

q

b0

)−3
]
, b1 = 0, b0 6= 0;

X1,2 = exp(∓2
√
−b0x)

[
∂

∂x
+
(
∓ q√

−b0
∓
√
−b0y

)
∂

∂y

]
.

6) Φ(y) = b0y +
1
4k

(
b20 −

36
625

b41

)
+ ky2,

X = exp
(
b1
5
x

){
∂

∂x
−
[
2
5
b1y −

1
5k
b1

(
b0 −

6
25
b21

)]
∂

∂y

}
,

where r1 and r2 satisfy the equation (4.14).
Note, that in cases 1)–4) and 6), if we denote a generator of translation through

X2 = ∂
∂x , and other admitting generator-through X1, then we obtain two-dimensional Lie

algebras, respectively, with commutators:
1) [X1, X2] = (r2 − r1)X1; 2) [X1, X2] = (r1 − r2)X1; 3) [X1, X2] = −b1X1;

4) [X1, X2] = b1X1; 6) [X1, X2] = −1
5b1X1.

In case 5) which reduces to a special case of the Ermakov equation (see [18]), the Lie
algebra of symmetries is three-dimensional. Let us denote the generator of translation
through X3, and other two generators admitting symmetries through X1, X2. Then
nonzero commutators as follows

5) [X1, X3] = −2
√
−b0X1; [X2, X3] = −2

√
−b0X2; [X1, X2] = −2

√
−b0(X1 +X2).

Note that one case 6) were passed in [19,20].
The lack of a sufficient place does not allow us to consider in detail the method of

factorization [20, 21] of constructing exact solutions for the found semilinear equations.
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