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Abstract

In this paper we obtain the maximal Lie symmetry algebra of a system of PDEs.
We reduce this system to a system of ODEs, using some rank three subalgebras of
the finite-dimensional part of the symmetry algebra. The corresponding invariant
solutions of the PDEs are obtained.

1 Introduction

Systems of evolution equations describe various processes in physics, chemistry and biology
[1, 2]. In the papers [3, 4] classes of systems of evolution equations are selected which are
invariant with respect to some generalizations of the classical Galilei algebra. We consider
the system proposed by W. Fushchych

∂u
∂t + 1

m∇u∇v + 1
2mu4v = 0,

∂v
∂t + 1

2m(∇v)2 − h̄2

2m
4u
u = 0,

(1)

in four-dimensional time-space R(1, 3), where h̄ is the Planck’s constant, m ∈ R, m 6= 0.
System (1) is obtained from the Schrödinger equation

iψt = − h̄

2m
4ψ

by the substitution ψ = ueiv/h̄.
From Theorem 1 it follows that the maximal symmetry algebra of system (1) contains

the algebra L = AG3(3)⊕ < Z >, where AG3(3) is the special Galilei algebra. Using
the classification of subalgebras of the algebra AG3(3), carried out in [5], we obtain all
(up to AdL-conjugacy) I-maximal rank three subalgebras of the algebra L. For symmetry
reduction of system (1) we use only subalgebras, whose projections onto ASL(2, R) belong
to < T >. In some cases considered the reduced system can be integrated, so that all
corresponding solutions of system (1) can be constructed.
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2 Maximal symmetry algebra of system (1)

We use the following notations

δt =
δ

δt
, δa =

δ

δxa
, δu =

δ

δu
, δv =

δ

δv
(a = 1, 2, 3).

Theorem 1 The maximal Lie symmetry algebra of system (1) is generated by the vector
fields

S = t2∂t + txa∂a − 3
2 tu∂u + m

2 |~x|
2∂v,

D = 2t∂t + xa∂a − 3
2u∂u, T = ∂t, Pa = −∂a,

Ga = t∂a +mxa∂v, Jab = xa∂b − xb∂a, M = m∂v,

Z = u∂u, (a < b; a, b = 1, 3)

(2)

and the infinite-dimensional algebra

X = ρ

(
cos

θ − v

h̄
δu +

h̄

u
sin

θ − v

h̄
δv

)
, (3)

where pair of functions u = ρ(t, ~x), (ρ(t, ~x) ≥ 0) and v = θ(t, ~x) is an arbitrary solutions
of system (1) (summation over repeated indices is assumed with a=1,2,3).

By direct calculations it is easy to verify that the operators M , Pa, Ga, Jab (a, b =
1, 2, 3), D, S, T generate the special Galilei algebra AG3(3) of the three-dimensional
space. The operator Z commutes with each element of the algebra AG3(3). Let U =<
M,P1, P2, P3, G1, G2, G3 >. Then

AG3(3) = U ⊃+(AO(3)⊕ASL(2,R)).

The algebra AG3(3) contains the Galilei algebras AGj(3) (j = 0, 1, 2), where

AG0(3) = U ⊃+AO(3), AG1(3) = U ⊃+(AO(3)⊕ < T >),

AG2(3) = U ⊃+(AO(3)⊕ < D,T >).

The symmetries can be used to build ansatzes which then reduce the equations of
(1) to partial differential equations with fewer independent variables or even to ordinary
differential equations. These ansatzes and reductions are based on subalgebra analysis of
a finite-dimensional part of the symmetry algebra.

3 Classification of I-maximal subalgebras

The concept of I-maximal subalgebra was introduced in the paper [6].

Theorem 2 The I-maximal rank three subalgebras of the algebra L = AG3(3)⊕ < Z >,
which have zero intersection with < M,Z >, are (up to the AdL-conjugacy):

(i) Subalgebras of the algebra AG0(3)⊕ < Z >:

F0 =< P1, P2, P3 >⊃+AO(3);
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F1 =< G1 + αZ,P2, P3, J23 >, where α = 0, 1;

F2 =< G1 + P1 + αZ,G2 + βZ, P3 + γZ > (α ≥ 0, β ≥ 0);

F3 =< G1 + αZ,P2 + Z,P3 >; (α ≥ 0)

F4 =< P1 + Z,P2, P3, J23 > .

(ii) Subalgebras of the algebra AG1(3)⊕ < Z > with a nonzero projection
onto < T >:

F5 =< P2, P3, T +
α

m
M + βZ, J23 >,

where α = ±m or α = 0 and β = 0,±1;

F6 =< P2, P3, T +G1 + αZ, J23 >;

F7 =< P3 + αZ, J12 +
β

m
M + γZ, T +

δ

m
Z + λZ >;

F8 = AO(3)⊕ < T +
α

m
M + βZ >;

F9 =< T +G1 + αZ,P2 + βZ, P3 > (β > 0);

F10 =< T +
α

m
M + βZ, P2 + Z,P3 > .

(iii) Subalgebras of the algebra AG2(3)⊕ < Z > with a nonzero projection
onto < D >:

F11 =< G1, P2, D + αM + βZ >; F12 =< P3, D + αM + βZ, T >;

F13 =< P2, P3, J23, D + αM + βZ >;

F14 =< J12 + αM + βZ,D + γM + δZ, T >;

F15 =< P3, J12 + αD + βM + γZ, T > (α > 0);

F16 =< P3, J12 + αM + βZ,D + γM + δZ > (α ≥ 0);

F17 = AO(3)⊕ < D + αM + βZ > .

(iv) Subalgebras of the algebra AG3(3)⊕ < Z >, whose projections onto
ASL(2,R) coincide with < S + T >:

F18 = AO(3)⊕ < S + T + αM + βZ >;

F19 =< S + T + 2J12 + αM + βZ, G1 + P2 +
√

2P3, G2 − P1 −
√

2G3 > .
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4 Reduction of system (1) by subalgebras of the algebra
AG1(3)⊕ < Z >. Exact solutions

For each of the subalgebras Fj (j = 1, 10) we give the corresponding ansatz and the reduced
system. In some cases we also point out solutions of system (1), which are invariant under
Fj .

4.1. F1 : u = exp
(
αx1

t

)
ϕ(ω), v =

mx2
1

2t
+ ψ(ω), ω = t,

2ωϕ̇+ ϕ = 0, ψ̇ − h̄2α2

2mω2 = 0.

The corresponding invariant solution of system (1) is of the form

u =
C1√
t
exp

(
αx1

t

)
, v =

mx2
1

2t
− h̄2α2

2mt
+ C2.

4.2. F2 : u = exp
(

α

t− 1
x1 + β

x2

t
− γx3

)
ϕ(ω),

v =
m

2(t− 1)
x2

1 +
m

2t
x2

2 + ψ(ω), ω = t,


2ω(ω − 1)ϕ̇+ (2ω − 1)ϕ = 0,

ψ̇ − h̄2

2m

(
α2

(ω − 1)2
+ β2

ω2 + γ2

)
= 0.

In this case we obtain the following invariant solution of system (1):

u = C1|t(t− 1)|−
1
2 exp

(
αx1
t− 1 + βx2

t − γx3

)
,

v = mx2
1

2(t− 1) + mx2
2

2t + h̄2

2m

(
− α2

t− 1 −
β2

t + γ2t

)
+ C2.

4.3. F3 : u = exp
(
αx1

t
− x2

)
ϕ(ω), v =

mx2
1

2t
+ ψ(ω), ω = t,

2ωϕ̇+ ϕ = 0, ψ̇ − h̄2

2m

(
α2

ω2 + 1

)
= 0.

The corresponding invariant solution is of the form:

u =
C1√
t
exp

(
αx1

t
− x2

)
, v =

mx2
1

2t
+
h̄2(t2 − α2)

2mt
+ C2.
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4.4. F4 : u = exp(−x1)ϕ(ω), v = ψ(ω), ω = t,

ϕ̇ = 0, ψ̇ − h̄2

2m
= 0.

The corresponding invariant solution is

u = C1 exp(−x1), v =
h̄2

2m
t+ C2.

4.5. F5 : u = exp(βt)ϕ(ω), v = αt+ ψ(ω), ω = x1.

The corresponding reduced system is 2βmϕ+ 2ϕ̇ψ̇ + ϕψ̈ = 0,

2αmϕ+ ϕψ̇2 − h̄2ϕ̈ = 0.

4.6. F6 : u = exp(αt)ϕ(ω), v = mtx1 −
m

3
t3 + ψ(ω), ω = t2 − 2x1.

The corresponding reduced system is αmϕ+ 4ϕ̇ψ̇ + 2ϕψ̈ = 0,

−m2ωϕ+ 4ϕψ̇2 − 4h̄2ϕ̈ = 0.

4.7. F7 : u = exp
(
λt− αx3 − γ arctan

x1

x2

)
ϕ(ω),

v = −β arctan
x1

x2
+ δt+ ψ(ω), ω = x2

1 + x2
2.

The corresponding reduced system is (λm+ βγ)ϕ+ 4ωϕ̇ψ̇ + 2ϕψ̇ + 2ωϕψ̈ = 0,

(β2 − h̄2(α2ω + γ2)) + 2δmω)ϕ− 4h̄2ωϕ̇− 4h̄2ω2ϕ̈+ 4ω2ϕψ̇2 = 0.

4.8. F8 : u = exp(βt)ϕ(ω), v = αt+ ψ(ω), ω = x2
1 + x2

2 + x2
3.

The corresponding reduced system is mβϕ+ 4ωϕ̇ψ̇ + 3ϕψ̇ + 2ωϕψ̈ = 0,

αmϕ+ 2ωϕψ̇2 − h̄2(3ϕ̇+ 2ωϕ̈) = 0.
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4.9. F9 : u = exp(αt− βx2)ϕ(ω),

v = m

(
tx1 −

t3

3

)
+ ψ(ω), ω = t2 − 2x1.

The corresponding reduced system is αmϕ+ 4ϕ̇ψ̇ + 2ϕψ̈ = 0,

−(m2ω + h̄2β2)ϕ+ 4ϕψ̇2 − 4h̄2ϕ̈ = 0.

4.10. F10 : u = exp(βt− x2)ϕ(ω), v = αt+ ψ(ω), ω = x1.

The corresponding reduced system is 2βmϕ+ 2ϕ̇ψ̇ + ϕψ̈ = 0,

(2αm− h̄2)ϕ+ ϕψ̇2 − h̄2ϕ̈ = 0.
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