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1 Introduction

The classical group analysis developed by S. Lie at the end of the past centure (see also
([1]–[2]) deals with systems of differential equations. For systems of integro-differential
equations an algoritm suggested by Lie should be modified. Difficulties arise when one tries
to construct and what is more important to solve nonlocal determining equations (NDE),
which result from invariance conditions for a basic system of nonlocal equations under the
group of transformations. The problem of obtaining NDE was repeatedly discussed (see
examples in [3], [4]). Following [5]–[9], in this paper the solution of NDE is used to obtain
a Lie point-symmetry group for Vlasov-Maxwell equations and to extend this group upon
nonlocal variables.

2 Vlasov-Maxwell equations

A hot rarefied plasma is a quasineutral gas of charged particles with a negligibly low rate of
Coulomb collisions. The macroscopic state of plasma particles is described by distribution
functions f (specific for different plasma particles species) which depend on time t, radius-
vector r of a particle in the coordinate space and particle’s velocity v. The evolution of
distribution functions is governed by kinetic equations:

fα
t + vfα

r + eα

{
E +

1
c
[vB]

}
fα
pα

= 0 ; pα =
mαv√

1− (v/c)2
. (1)

The index α indicates a sort of plasma particles (with the charge eα and mass mα), c is
the free-space light velocity. The fields E and B in (1) obey the Maxwell equations

Bt + c rot E = 0 ; div E = 4πρ ; Et − c rot B + 4πj = 0 ; div B = 0 , (2)

where the charge density ρ and current density j are in turn governed by motion of particles:

ρ =
∑
α

eα

∫
dpα fα , j =

∑
α

eα

∫
dpα fαv . (3)

Equations (1)–(3) are known as Vlasov-Maxwell equations [10].
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3 Group analysis of Vlasov-Maxwell equations.
First stage: constructing of local
determining equations

The group admitted by Vlasov-Maxwell equations for homogeneous electron plasma in the
one-dimensional nonrelativistic limit was first found in [11]. By introducing moments of a
distribution function, the author transformed the basic integro-differential manifold to an
infinite set of differential equations which was analyzed using the standard Lie approach.
A similar method was used in [12], where group analysis was done for one-dimensional
kinetic Benney equations (Vlasov-type equations) and some of their dissipative analogues.
For the one-dimensional nonrelativistic model of Vlasov-Maxwell equations, the direct
construction of NDE was fulfilled in [13] with the help of finite transformations generated
by the Lie point group.

An approach that enables to construct NDE for a wide class of integro-differential
systems was suggested in [14]. In particular, the result of [11] was reproduced in [14]
by a direct solution of NDE. Based on [14] we presented a general concept in group
analysis of Vlasov-Maxwell equations [6]. Its main idea combines a local group analysis
of a differential part [1]–[2] of Vlasov-Maxwell equations with a nonlocal group analysis
of material relationships (3). The construction of a NDE is formalized thanks to the
special representation (see the formula (7) below). Employment of a solution of local
determinig equations in order to simplify a NDE and a subsequent splitting of NDE by
means of variational differentiation with respect to the distribution function† make closed
the whole procedure of group analysis of Vlasov-Maxwell equations [1]–[3]. The latter
operation is not described in [14].

Local determinig equations (LDE) yield invariance criteria of equations (1)–(2) under
the point transformation group with the canonical infinitesimal operator (IO) [2]

Y =
∑
α

χ1 α∂fα +
−→
χ2∂E +

−→
χ3∂B +

−→
χ4∂j + χ5∂ρ (4)

and are obtained in a standard way [1]–[2], namely applying the operator Y to basic
equations (1)–(2). The result is as follows:
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+
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c
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]
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−Dt
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= 4π
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(
Dr,
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)
= 4πχ5 ;
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(−→
χ2

)
= 0 , Dv

(−→
χ3

)
= 0 .

(5)

†See below section 4.
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The last two vector LDE in (5) follow from the equations Ev = 0 and Bv = 0, which
expresses the ”trivial” fact of independence of the fields E and B upon the velocity v of
plasma particles; Ds is the total derivative with respect to s.

The solution of LDE (5) is found in a usual way [1]–[2] and is presented by the following
equalities which define the group of an intermediate symmetry (see [5]–[9]):

χ1 α = η1 α(fα)− ξ1fα
t −

−→
ξ2fα

r −
−→
ξ3fα

v ;
−→
χ2 = −A4E + [g, E]− c [b, B]−

ξ1Et −
(−→
ξ2 , ∇

)
E ;

−→
χ3 = −A4B + [g, B] + c [b, E]− ξ1Bt −

(−→
ξ2 , ∇

)
B ;

−→
χ4 = −2A4j + [g, j] + c2b ρ− ξ1jt −

(−→
ξ2 , ∇

)
j ; χ5 = −2A4ρ + (b, j)−

ξ1ρt −
−→
ξ2ρr ; ξ1 = A0 + (b, r) + A4t ;

−→
ξ2 = A + c2bt + [g, r] + A4r ;

−→
ξ3 = c2b− (b, v)v + [g, v] .

(6)

Here A0, A, A4, b and g are arbitrary constants, η1 α(fα) are unknown functions of a
single group variable, namely the distribution function fα.

4 Second stage: construction of nonlocal determining
equations

As material relationships (3) are nonlocal, we use the special representation [5] for deriva-
tives with respect to fα in the canonical IO (4):

χ1 α∂fα ≡
∫

dv χ1 α(v)
δ

δfα(v)
. (7)

In view of the formula (7) the direct action of the canonical IO (4) upon equalities (3)
gives the desired NDE:

χ5 −
∑
α

eα

∫
dpχ1 α = 0 , χ4 −

∑
α

eα

∫
dpχ1 α v = 0 . (8)

Substituting explicit expressions for coordinates of the canonical IO (6) in the first of
equations (8) for the particular case of electron-ion plasma (α = e, i) †:∫

dv
(
1− (v/c)2

)− 5
2

[
em3

(
η1(f) + 2A4f

)
+ ē(m̄)3

(
η1(f̄) + 2A4f̄

)]
= 0 . (9)

As any other determining equation, the NDE (9) is an identity with respect to the
group variables involved, namely distribution functions f and f̄ . In contrast to local DE,
where splitting is achieved by differentiating with respect to group variables, in NDE one
should use variational differentiation. Hence, applying variational derivatives δ/δf(v′)
and δ/δf̄(v′) to NDE (9), we obtain the following two ordinary differential equations:

η1
f + 2A4 = 0 ; η1

f̄ + 2A4 = 0 .

†In what follows e, m, f denote the charge, mass and distribution function of electrons; the variables
which refer to ions are marked with the bar (e.g., ē is the charge of ions with the mass m̄).
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Integrating these relashionships gives solution of the first NDE (8):

η1 = −2A4f +
1

em3
A5 ; η1 = −2A4f̄ −

1
ē(m̄)3

A5 . (10)

Solving the second NDE (8) yields the same results (10).
The obtained formulas (6) and (10) completely describe the continuous Lie point group

of Vlasov-Maxwell equations [5]. It appears more convenient to present the operators of
this group in a non-canonical form:

X0 = ∂t ; X = ∂r ;

Y = r∂t + c2t∂r + c2∂v − v (v, ∂v)− c [B, ∂E] + c [E, ∂B] + c2ρ∂j + j∂ρ ;

Z = [r, ∂r] + [v, ∂v] + [E, ∂E] + [B, ∂B] + [j, ∂j] ;

X4 = t∂t + r∂r − 2f∂f − 2f̄∂f̄ −E∂E −B∂B − 2j∂j − 2ρ∂ρ ;

X5 =
1

em3
∂f −

1
ē(m̄)3

∂f̄ .

(11)

The Poincaré group, which is obvious from physical considerations, corresponds to a
subgroup represented here by ten (scalar) IO:

L10 =< X0, X, Y, Z > .

This subgroup is supplemented with IO corresponding to dilatations X4 and translations
X5. If parameters of the theory (namely, e, ē, m, m̄, c) are invariant, the continuous Lie
group admitted by Vlasov-Maxwell equations (1)–(3) is a finite 12-parameter group. In
general, the set of IO (11) is supplemented by four more dilatation operators [5], [7].

5 Prolongation of group generators on nonlocal
variables

The use of the symmetry group obtained (11) and the special representation of the deriva-
tive in the canonical IO (7) enable to prolong the group operator on nonlocal variables [8]
and to find transformation laws for various nonlocal variables [9] such as entropy, plasma
temperature, etc. To illustrate the possibility of such prolongation, we rewrite the sym-
metry group IO of Vlasov-Maxwell equations in Fourier variables (ω, k representation).

The Fourier-transform of the distribution function of electrons is defined by a standard
formula:

f̂(ω, k, v) =
∫

dt drf(t, r, v) exp(iωt− ikr) . (12)

Prolonging the canonical IO (4) on the Fourier-transform f̂

Ŷ = Y + χ̂1∂f̂ (13)
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and applying the operator (13) to the formula (12), we obtain the following integral rela-
tionship between coordinates χ̂1 and χ1:

χ̂1 =
∫

dt drχ1 exp(iωt− ikr) . (14)

Substituting in (14) the coordinate of IO χ1 given by (6), (10) and integrating by parts, we
obtain the final result for the coordinate of IO (13) which defines the transformation of the
Fourier-transform of the distribution function of electrons. In a similar way one can cal-
culate coordinates of the canonical IO that define transformations of remaining functions
in Vlasov-Maxwell equations. The point group thus obtained (in ω, k representation) is
expressed as follows:

X̂0 = iω

(
f̂∂f̂ + ̂̄f∂̂̄f + Ê∂Ê + B̂∂B̂ + ĵ∂ĵ + ρ̂∂ρ̂

)
;

X̂ = −ik
(

f̂∂f̂ + ̂̄f∂̂̄f + Ê∂Ê + B̂∂B̂ + ĵ∂ĵ + ρ̂∂ρ̂

)
;

Ŷ = c2k∂ω + ω∂k + c2∂v − v (v, ∂v)− c
[
B̂, ∂Ê

]
+ c

[
Ê, ∂B̂

]
+ c2ρ̂∂ĵ + ĵ∂ρ̂ ;

Ẑ = [k, ∂k] + [v, ∂v] +
[
Ê, ∂Ê

]
+

[
B̂, ∂B̂

]
+

[̂
j, ∂ĵ

]
;

X̂4 = −ω∂ω − k∂k + 2f̂∂f̂ + 2̂̄f∂̂̄f + 3Ê∂Ê + 3B̂∂B̂ + 2ĵ∂ĵ + 2ρ̂∂ρ̂ ;

X̂5 = δ(ω) δ(k)

[
1

em3
∂f̂ −

1
ē(m̄)3

∂̂̄f
]

.

(15)

It should be noticed that the commutation table for IO (15) coincides with that for (11).
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