Quasiclassical Solutions of the Schrödinger Equations as a Consequense of the Nonlinear Problem

A.A. BORGHARDT, D.Ya. KARPENKO and D.V. KASHKAKHA

Donetsk Physico-Technical Institute of the National Ukrainian Academy of Sciences

Abstract

Quasiclassic method of solving of the Schrödinger equation with quadratic Hamiltonian is used to derive solutions of Klein-Fock equation for the particle in the constant magnetic field and the jumping magnetic field.

Let us consider the relativistic wave equation

$$
\begin{gather*}
\left(D_{\lambda}^{2}-k_{0}^{2}\right) \psi=0 \\
k_{0}=\frac{m c}{\hbar} \tag{1}\\
D_{\mu}=\frac{\partial}{\partial x_{\mu}}+\frac{i e}{\hbar c} A_{\mu}
\end{gather*}
$$

with the electromagnetic field of the form

$$
\begin{gather*}
A_{\mu}=A_{\mu}^{T}=\frac{\mathbf{H}}{2}\left(-x_{2}, x_{1}, 0,0\right), \\
\mathbf{H}=\text { const. } \tag{2}
\end{gather*}
$$

It should be noted that the Maxwell equations let to use the magnetic field \mathbf{H} depending on the variable $\xi=c t-z \quad$ (or $\eta=c t+z$). We provide the following investigation of Eq.(1) in the characteristics representation

$$
\begin{gather*}
\xi=c t-z, \\
\eta=c t+z, \tag{3}\\
\overrightarrow{x_{\perp}}=\left(x_{1}, x_{2}, 0\right)
\end{gather*}
$$

which may be introduced in covariant form. We introduce the axial and transverse coordinates

$$
\begin{array}{r}
x=x_{1}+i x_{2}, \\
x^{+}=x_{1}-i x_{2} . \tag{4}
\end{array}
$$

Copyright © 1996 by Mathematical Ukraina Publisher. All rights of reproduction in any form reserved.

Thus the equation (1) has the form

$$
\begin{equation*}
\left(D_{\perp}^{2}-4 \frac{\partial^{2}}{\partial \xi \partial \eta}-k_{0}^{2}\right) \psi=0 \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{\perp}^{2}=4 \frac{\partial^{2}}{\partial x \partial x^{+}}+\frac{e \mathbf{H}}{2 \hbar c}\left(x^{+} \frac{\partial}{\partial x^{+}}-x \frac{\partial}{\partial x}\right)-\frac{e^{2} \mathbf{H}^{2}}{16 \hbar^{2} c^{2}} x^{+} x . \tag{6}
\end{equation*}
$$

If the operator D_{\perp}^{2} does not depend on the variables ξ, η we can apply to Eq.(5) the Fourier-Bessel transformation

$$
\begin{equation*}
\psi\left(x^{T}, \xi, \eta\right)=\int J_{0}\left(\sqrt{\xi \eta Q^{2}}\right) \varphi\left(x, x^{+}, Q\right) Q d Q \tag{7}
\end{equation*}
$$

and to consider the Gorsat problem solutions [1]. If the operator D_{\perp}^{2} depends on the characteristics variable (that is $\mathbf{H}=\mathbf{H}(\xi)$) then we apply to Eq. (5) the Fourier transformation in respect to the advanced relativistic time $\eta[2]$

$$
\begin{equation*}
\psi\left(x^{T}, \xi, \eta\right)=\frac{1}{2 \pi \hbar} \int d \beta \exp \left(\frac{-i \beta}{\hbar} \eta\right) \varphi\left(x, x^{+}, \beta\right) \tag{8}
\end{equation*}
$$

and then we obtain "nonrelativistic" equation for function φ

$$
\begin{gather*}
\left(\frac{\hbar}{i} \frac{\partial}{\partial \xi}+\mathbf{H}\right) \varphi=0 \\
\mathbf{H}=-\frac{\hbar^{2}}{4 \beta}\left(D_{\perp}^{2}-k_{0}^{2}\right) . \tag{9}
\end{gather*}
$$

To find the quasiclassical solutions of Eq.(8) we introduce

$$
\begin{equation*}
\varphi\left(x, x^{+}, \beta, \xi\right)=\phi(\xi, \beta) \exp \left(\frac{i}{\hbar} S\left(x, x^{+}, \xi, \beta\right)\right) \tag{10}
\end{equation*}
$$

with the complex amplitude ϕ and action S. Two equations arise

$$
\begin{gather*}
\frac{\partial \phi}{\partial \xi}+\frac{1}{\beta} \cdot \frac{\partial^{2} S}{\partial x \partial x^{+}} \phi=0 \\
\frac{\partial S}{\partial \xi}+\frac{1}{\beta} \frac{\partial S}{\partial x} \frac{\partial S}{\partial x^{+}}-\frac{i \Omega}{2 \beta}\left(x^{+} \frac{\partial S}{\partial x^{+}}-x \frac{\partial S}{\partial x}\right) \tag{11}
\end{gather*}
$$

where $\Omega=\frac{e H}{\hbar c}$. The Hamiltonian (8) is quadratic and so it can be supposed that the action S has the form

$$
\begin{equation*}
S=A(\xi, \beta)+B(\xi, \beta) x+B^{+}(\xi, \beta) x^{+}+C(\xi, \beta) x^{+} x \tag{12}
\end{equation*}
$$

and then the problem reduces to the solution of the system of ordinary differential equations of first order

$$
\begin{equation*}
\frac{d A}{d \xi}+\frac{1}{\beta} B^{+} B+\frac{m^{2} c^{2}}{4 \beta}=0 \tag{13}
\end{equation*}
$$

$$
\begin{gather*}
\frac{d B}{d \xi}+\frac{1}{\beta}\left(C+\frac{i \Omega}{2}\right) B=0, \quad \frac{d B^{+}}{d \xi}+\frac{1}{\beta}\left(C-\frac{i \Omega}{2} B^{+}\right)=0 \tag{14}\\
\frac{d C}{d \xi}+\frac{1}{\beta}\left(C^{2}+\frac{\Omega^{2}}{4}\right)=0 \tag{15}
\end{gather*}
$$

The nonlinear equation (15) is principal and we call the function C key-function. It may be shown that all other coefficients in the action S and amplitude ϕ can be expressed via the key-function C.

The Eq.(15) and its solutions have the following properties (Ω is a constant):

1. If C ia a solution then $\widetilde{C}=-\frac{\Omega^{2}}{4} \frac{1}{C}$ is a solution also.
2. A fuction of C and C^{+}is a solution $C(1+\Omega)=C(-\Omega)$.
3. There is pure imaginary solution if $C=C_{0}= \pm \frac{i \Omega}{2}$.

The solution of Eq.(15) can be found by linearization of Eq.(15) by means of applying Caley-Klein transformation of the complex function C

$$
\begin{align*}
F & =\frac{C-i \Omega / 2}{C+i \Omega / 2} \\
C & =\frac{i \Omega}{2} \cdot \frac{1+F}{1-F} \tag{16}
\end{align*}
$$

where F must be the solution of the linear equation

$$
\begin{equation*}
\frac{d F}{d \xi}+\frac{i \Omega}{\beta} F=0 \tag{17}
\end{equation*}
$$

with the periodical solutions. That gives the key-function

$$
\begin{equation*}
C(\xi)=\frac{i \Omega}{2} \cdot \frac{1+b \cdot \exp \left(\frac{-i \Omega}{\beta \xi}\right)}{1-b \cdot \exp \left(\frac{-i \Omega}{\beta \xi}\right)} \tag{18}
\end{equation*}
$$

where b is a complex parameter of the constant of integration. It follows from Eq.(18) that the imaginary part of the key-function has a form

$$
\begin{equation*}
\operatorname{Im} C=\frac{\Omega\left(1-\rho^{2}\right)}{2\left(1+\rho^{2}-2 \rho \cos \left(\frac{\Omega \xi}{2 \beta}-\vartheta\right)\right)} \tag{19}
\end{equation*}
$$

where $\rho=b^{*} b$ and $\vartheta=\arctan \left(\frac{\operatorname{Im} \beta}{\operatorname{Re} \beta}\right)$. The importance of the parameter b is seen from the investigation of the behaviour of the function $\operatorname{Im} C$. If $\rho^{2}<1$ and $\operatorname{Im} C>0$ then the states are normalizable. Passing to the region where $\rho^{2}>1$ it is seen that function $\operatorname{Im} C$ disappears if $\rho^{2}=1$ and then the sign changes of the Eq.(19).

There is the periodicity of key-function C in relativistic retarded time due to its interesting property $\left(T=\frac{2 \pi \beta}{\Omega}\right)$

$$
\begin{equation*}
\langle C(\xi)\rangle=\frac{1}{T} \int_{\xi_{0}}^{\xi_{0}+T} d \xi^{\prime} C\left(\xi^{\prime}\right)=\frac{i \Omega}{2} \tag{20}
\end{equation*}
$$

The value $C_{0}=\frac{i \Omega}{2}$ corresponds to the stable coherent state we obtain some singular state when $b=1$ and $\operatorname{Im} C=0, \quad \operatorname{Re} C=\frac{\Omega}{2} \cot \frac{\Omega \xi}{2 \beta}$. This solution represents the fundamental solution of the problem and it may be used as the Green function. The region $\rho^{2}<1$ represents the pulsating states unknown in traditional theory. The problem to be developed in this approach is the behaviour of the system by the jumps of magnetic field H and the jumps of the value Ω. The continuity of solutions $(\varphi$ or $\psi)$ is guaranted by the continuity of the key-function C, and when the frequency Ω_{1} changes at $\xi=\xi_{0}$ into Ω_{2} the condition of continuity is

$$
C\left(\Omega_{1}, \xi_{0}\right)=C\left(\Omega_{2}, \xi_{0}\right)
$$

We remind that if $\Omega=0$ then the solution for a free particle is

$$
\begin{equation*}
C(\xi)=\frac{C_{0}}{1+C_{0} \xi / \beta} . \tag{21}
\end{equation*}
$$

It two particular cases can be considered:

1. the case of the plane wave if $C_{0}=0$.
2. the case of the free Green function of the Schrödinger equation if $C_{0} \rightarrow \infty$, then the key-function C is $C=\frac{\beta}{\xi}$ and

$$
\begin{equation*}
\varphi=\frac{\phi_{0}}{\xi} \exp \left(\frac{i \beta x_{\perp}^{2}}{\hbar \xi}-\frac{i m^{2} c^{2} \xi}{4 \hbar \beta}\right) \tag{22}
\end{equation*}
$$

We emphasize that if the magnetic field $H \rightarrow 0$ then the state with $b=1$ and $C=\frac{\beta}{\xi}$ is the Green function and there is a stable coherent state if $b=0$. If the parameter $0<b<1$ then the stable coherent state with $C=C_{0}=\frac{i \Omega}{2}$ become pulsatily.

Let before the point ξ_{0} the frequency was Ω_{0} and after ξ_{0} become it Ω_{1}. Then the condition of continuity gives $\left(b_{0}=0\right)$

$$
\begin{equation*}
b_{1}=\frac{\Omega_{0}-\Omega_{1}}{\Omega_{0}+\Omega_{1}} \exp \left(\frac{i \Omega_{1} \xi_{0}}{\beta}\right) \tag{23}
\end{equation*}
$$

and

$$
b_{1}^{*} b_{1}=\left(\frac{\Omega_{0}-\Omega_{1}}{\Omega_{0}+\Omega_{1}}\right)^{2}<1
$$

The inverse process of transfer from pulsating state with given b_{1} into stable coherent state gives

$$
\begin{equation*}
b_{1}=\frac{\Omega_{1}-\Omega_{0}}{\Omega_{0}+\Omega_{1}} \exp \left(\frac{i \Omega_{0} \xi_{0}}{\beta}\right) \tag{24}
\end{equation*}
$$

and $b_{1}^{*} b_{1}<1$ once again.
Making two such the jumps ($\xi_{1}<\xi_{0}$) we obtain the condition of conservation of the stable coherent state

$$
\begin{equation*}
\exp \left(\frac{i \Omega_{1}\left(\xi_{1}-\xi_{0}\right)}{\beta}\right)=\frac{\Omega_{0}-\Omega_{1}}{\Omega_{0}+\Omega_{1}} \cdot \frac{\Omega_{1}+\Omega_{2}}{\Omega_{2}-\Omega_{1}} \tag{25}
\end{equation*}
$$

that gives the restriction on the time interval $\Delta \xi=\xi_{1}-\xi_{0}$. This is possible at $\Omega_{1}=\Omega_{0}$ only. In this case Eq.(25) has the solution

$$
\begin{equation*}
\Delta \xi_{n}=\frac{\pi \beta}{2 \Omega_{1}}(2 n+1) \tag{26}
\end{equation*}
$$

After the rectangle impulse of amplitude of $\Omega_{1}-\Omega_{0}$ and the duration of $\Delta \xi_{n}$ the system returns into the stable coherent state.

References

[1] Courant R., Partial Differential Equations, New York, London, 1962.
[2] Borghardt A., Karpenko D., On the class of the integral transformations in relativistic quantum theory, Kiev, 1975, Preprint /ITP-75-19E, 16p.

