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Abstract

Quasiclassic method of solving of the Schrödinger equation with quadratic Hamiltonian
is used to derive solutions of Klein-Fock equation for the particle in the constant
magnetic field and the jumping magnetic field.

Let us consider the relativistic wave equation(
D2

λ − k2
0

)
ψ = 0,

k0 =
mc

h̄
, (1)

Dµ =
∂

∂xµ
+
ie

h̄c
Aµ

with the electromagnetic field of the form

Aµ = AT
µ =

H
2

(−x2, x1, 0, 0),

H = const. (2)

It should be noted that the Maxwell equations let to use the magnetic field H depending
on the variable ξ = ct − z (or η = ct + z) . We provide the following investigation of
Eq.(1) in the characteristics representation

ξ = ct− z,

η = ct+ z, (3)

~x⊥ = (x1, x2, 0)

which may be introduced in covariant form. We introduce the axial and transverse coor-
dinates

x = x1 + ix2,

x+ = x1 − ix2. (4)
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Thus the equation (1) has the form(
D2
⊥ − 4

∂2

∂ξ∂η
− k2

0

)
ψ = 0 (5)

where

D2
⊥ = 4

∂2

∂x∂x+
+
eH
2h̄c

(
x+ ∂

∂x+
− x

∂

∂x

)
− e2H2

16h̄2c2
x+x. (6)

If the operator D2
⊥ does not depend on the variables ξ, η we can apply to Eq.(5) the

Fourier-Bessel transformation

ψ(xT , ξ, η) =
∫
J0(
√
ξηQ2)ϕ(x, x+, Q)QdQ (7)

and to consider the Gorsat problem solutions [1]. If the operator D2
⊥ depends on the char-

acteristics variable (that is H = H(ξ)) then we apply to Eq.(5) the Fourier transformation
in respect to the advanced relativistic time η [2]

ψ(xT , ξ, η) =
1

2πh̄

∫
dβ exp

(−iβ
h̄
η

)
ϕ(x, x+, β) (8)

and then we obtain ”nonrelativistic” equation for function ϕ(
h̄

i

∂

∂ξ
+ H

)
ϕ = 0,

H = − h̄
2

4β

(
D2
⊥ − k2

0

)
. (9)

To find the quasiclassical solutions of Eq.(8) we introduce

ϕ(x, x+, β, ξ) = φ(ξ, β) exp
(
i

h̄
S(x, x+, ξ, β)

)
(10)

with the complex amplitude φ and action S. Two equations arise

∂φ

∂ξ
+

1
β
· ∂2S

∂x∂x+
φ = 0,

∂S

∂ξ
+

1
β

∂S

∂x

∂S

∂x+
− iΩ

2β

(
x+ ∂S

∂x+
− x

∂S

∂x

)
(11)

where Ω =
eH

h̄c
. The Hamiltonian (8) is quadratic and so it can be supposed that the

action S has the form

S = A(ξ, β) +B(ξ, β)x+B+(ξ, β)x+ + C(ξ, β)x+x (12)

and then the problem reduces to the solution of the system of ordinary differential equa-
tions of first order

dA

dξ
+

1
β
B+B +

m2c2

4β
= 0, (13)
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dB

dξ
+

1
β

(
C +

iΩ
2

)
B = 0,

dB+

dξ
+

1
β

(
C − iΩ

2
B+

)
= 0, (14)

dC

dξ
+

1
β

(
C2 +

Ω2

4

)
= 0. (15)

The nonlinear equation (15) is principal and we call the function C key-function. It may
be shown that all other coefficients in the action S and amplitude φ can be expressed via
the key-function C.

The Eq.(15) and its solutions have the following properties (Ω is a constant):

1. If C ia a solution then C̃ = −Ω2

4
1
C

is a solution also.

2. A fuction of C and C+ is a solution C(1 + Ω) = C(−Ω).

3. There is pure imaginary solution if C = C0 = ± iΩ
2

.

The solution of Eq.(15) can be found by linearization of Eq.(15) by means of applying
Caley–Klein transformation of the complex function C

F =
C − iΩ/2
C + iΩ/2

,

C =
iΩ
2
· 1 + F

1− F
(16)

where F must be the solution of the linear equation

dF

dξ
+
iΩ
β
F = 0 (17)

with the periodical solutions. That gives the key-function

C(ξ) =
iΩ
2
·
1 + b · exp

(−iΩ
βξ

)
1− b · exp

(−iΩ
βξ

) (18)

where b is a complex parameter of the constant of integration. It follows from Eq.(18)
that the imaginary part of the key-function has a form

ImC =
Ω(1− ρ2)

2
(

1 + ρ2 − 2ρ cos
(

Ωξ
2β

− ϑ

)) (19)

where ρ = b∗b and ϑ = arctan
(

Imβ

Reβ

)
. The importance of the parameter b is seen from

the investigation of the behaviour of the function ImC. If ρ2 < 1 and ImC > 0 then the
states are normalizable. Passing to the region where ρ2 > 1 it is seen that function ImC
disappears if ρ2 = 1 and then the sign changes of the Eq.(19).

There is the periodicity of key-function C in relativistic retarded time due to its inter-

esting property
(
T =

2πβ
Ω

)

〈C(ξ)〉 =
1
T

∫ ξ0+T

ξ0
dξ

′
C(ξ

′
) =

iΩ
2
. (20)
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The value C0 =
iΩ
2

corresponds to the stable coherent state we obtain some singular state

when b = 1 and ImC = 0, ReC =
Ω
2

cot
Ωξ
2β

. This solution represents the fundamental

solution of the problem and it may be used as the Green function. The region ρ2 < 1 rep-
resents the pulsating states unknown in traditional theory. The problem to be developed
in this approach is the behaviour of the system by the jumps of magnetic field H and the
jumps of the value Ω. The continuity of solutions (ϕ or ψ) is guaranted by the continuity
of the key-function C, and when the frequency Ω1 changes at ξ = ξ0 into Ω2 the condition
of continuity is

C(Ω1, ξ0) = C(Ω2, ξ0).

We remind that if Ω = 0 then the solution for a free particle is

C(ξ) =
C0

1 + C0ξ/β
. (21)

It two particular cases can be considered:
1. the case of the plane wave if C0 = 0.
2. the case of the free Green function of the Schrödinger equation if C0 → ∞, then

the key-function C is C =
β

ξ
and

ϕ =
φ0

ξ
exp

(
iβx2

⊥
h̄ξ

− im2c2ξ

4h̄β

)
. (22)

We emphasize that if the magnetic field H → 0 then the state with b = 1 and C =
β

ξ
is

the Green function and there is a stable coherent state if b = 0. If the parameter 0 < b < 1

then the stable coherent state with C = C0 =
iΩ
2

become pulsatily.
Let before the point ξ0 the frequency was Ω0 and after ξ0 become it Ω1. Then the

condition of continuity gives (b0 = 0)

b1 =
Ω0 − Ω1

Ω0 + Ω1
exp

(
iΩ1ξ0
β

)
, (23)

and

b∗1b1 =
(

Ω0 − Ω1

Ω0 + Ω1

)2

< 1.

The inverse process of transfer from pulsating state with given b1 into stable coherent
state gives

b1 =
Ω1 − Ω0

Ω0 + Ω1
exp

(
iΩ0ξ0
β

)
, (24)

and b∗1b1 < 1 once again.
Making two such the jumps ( ξ1 < ξ0 ) we obtain the condition of conservation of the

stable coherent state

exp
(
iΩ1(ξ1 − ξ0)

β

)
=

Ω0 − Ω1

Ω0 + Ω1
· Ω1 + Ω2

Ω2 − Ω1
(25)
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that gives the restriction on the time interval ∆ξ = ξ1 − ξ0. This is possible at Ω1 = Ω0

only. In this case Eq.(25) has the solution

∆ξn =
πβ

2Ω1
(2n+ 1). (26)

After the rectangle impulse of amplitude of Ω1 − Ω0 and the duration of ∆ξn the system
returns into the stable coherent state.
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