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Abstract

Quasiclassic method of solving of the Schrodinger equation with quadratic Hamiltonian
is used to derive solutions of Klein-Fock equation for the particle in the constant
magnetic field and the jumping magnetic field.

Let us consider the relativistic wave equation

(D} - K3) v =0,

o e
N Ox, hc

with the electromagnetic field of the form

Dy

H
Alt = AZj = ?(—[1}2,1'1,0,0),

H = const.

(2)

It should be noted that the Maxwell equations let to use the magnetic field H depending
on the variable £ = ¢t — z (or n = ct + z) . We provide the following investigation of

Eq.(1) in the characteristics representation
E=ct—z,

n=ct+z,

¥] = (x1,22,0)

(3)

which may be introduced in covariant form. We introduce the axial and transverse coor-

dinates
T =T+ T2,

T =2 — izo.

(4)
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Thus the equation (1) has the form

62
2 4 07 o _
(DL e k0> =0 (5)
where 9?2 H 0 0 2H2
D2 =42 e( + 9 _ )—e +e.
L OxOxt + 2he v oxt x@x 16h202m o (6)

If the operator Di does not depend on the variables £, we can apply to Eq.(5) the
Fourier-Bessel transformation

T ) = [ (/nQDe.at,Q)RdQ (7)

and to consider the Gorsat problem solutions [1]. If the operator Dﬁ_ depends on the char-
acteristics variable (that is H = H(E)) then we apply to Eq.(5) the Fourier transformation
in respect to the advanced relativistic time 7 [2]

—iB

vl &) = 5o [ 4 e (500) (ot ) 8

and then we obtain "nonrelativistic” equation for function ¢

h O

h2

H:—@(Di—kg). (9)

To find the quasiclassical solutions of Eq.(8) we introduce

pla,a" 5. = 96 ) exp (1 5(a.27,€,9)) (10)

with the complex amplitude ¢ and action S. Two equations arise

06 1 oS
o [ Oxdxt

89S 195 S 0 <$+ oS aS)

¢ =0,

(11)

o€ T Boronr 28 \" ot Tox

H
where Q) = eh—. The Hamiltonian (8) is quadratic and so it can be supposed that the

action S has tﬁe form
S=A(&,B) + B B)x + BT (€, 8)a" + C(&,B)aTx (12)

and then the problem reduces to the solution of the system of ordinary differential equa-

tions of first order A 5 5
d 1
i optp+ S

i3 w0 (13)
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dB 1 TN dBt 1 (., iQ,.\
5+ﬁ<0+2>B_0, v +B<C QB>—07 (14)
dC 1 ( o Q%)
d§+ﬁ<c +4>_0. (15)

The nonlinear equation (15) is principal and we call the function C key-function. It may
be shown that all other coefficients in the action S and amplitude ¢ can be expressed via
the key-function C.

The Eq.(15) and its solutions have the following properties (2 is a constant):
2

1. If C ia a solution then C' = Ve is a solution also.
2. A fuction of C'and C7 is a solution C(1+4 Q) = C(—Q).

3. There is pure imaginary solution if C' = Cy = :I:%.
The solution of Eq.(15) can be found by linearization of Eq.(15) by means of applying
Caley—Klein transformation of the complex function C

_C—iQ)/2
- C+iQ)2’
i 1+ F
C=51-F (16)
where F' must be the solution of the linear equation
dF i)

with the periodical solutions. That gives the key-function

—iQ)
o=2. (&Qg (19

1—b-exp( ¢

where b is a complex parameter of the constant of integration. It follows from Eq.(18)
that the imaginary part of the key-function has a form

Q(1 - p?)
2 (1 + p? — 2pcos (;Zé —79))

where p = b*b and ¥ = arctan (&) The importance of the parameter b is seen from
e
the investigation of the behaviour of the function ImC. If p?> < 1 and Im C' > 0 then the

states are normalizable. Passing to the region where p? > 1 it is seen that function Im C
disappears if p> = 1 and then the sign changes of the Eq.(19).
There is the periodicity of key-function C' in relativistic retarded time due to its inter-

2
esting property <T = gﬁ)

F

ImC =

(19)

aoe) =1 (20)
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i)
The value Cy = - corresponds to the stable coherent state we obtain some singular state

when b =1 and ImC =0, ReC = 3 cot S;é This solution represents the fundamental
solution of the problem and it may be used as the Green function. The region p? < 1 rep-
resents the pulsating states unknown in traditional theory. The problem to be developed
in this approach is the behaviour of the system by the jumps of magnetic field H and the
jumps of the value Q. The continuity of solutions (¢ or 1) is guaranted by the continuity
of the key-function C, and when the frequency €2; changes at £ = £j into {22 the condition
of continuity is

C (821, &0) = C(2, &)
We remind that if = 0 then the solution for a free particle is

1+ Co&/B
It two particular cases can be considered:

1. the case of the plane wave if Cy = 0.
2. the case of the free Green function of the Schrédinger equation if Cy — oo, then

the key-function C is C = ? and

c(€)

% exp (zﬂ zi _ im2€25> . (22)

PTETP\The T Tanp

We emphasize that if the magnetic field H — 0 then the state with 6 =1 and C = ? is
the Green function and there is a stable coherent state if b = 0. If the parameter 0 <b <1

Q
then the stable coherent state with C' = Cy = % become pulsatily.
Let before the point & the frequency was g and after & become it ;. Then the

condition of continuity gives (by = 0)

_ - exp (i91§0)
Qo + N g )’

. Qo — Q12
= () o,
bibr (Qo +Ql> <

The inverse process of transfer from pulsating state with given b; into stable coherent

state gives
_ - exp (19050)
Qo+ J6] ’

1 (23)

and

1 (24)
and b7b; < 1 once again.

Making two such the jumps ( & < & ) we obtain the condition of conservation of the
stable coherent state

exp (191(51 - 50)) Q=N D+

— . 2
5 Qr 00 (25)
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that gives the restriction on the time interval A¢ = & — &. This is possible at 2 = Qg
only. In this case Eq.(25) has the solution

T

Afn:ﬂ

(2n +1). (26)

After the rectangle impulse of amplitude of €27 — ()¢ and the duration of A¢, the system
returns into the stable coherent state.
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