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Abstract—When images compressed by traditional 
transformation-based compression algorithms are 
transmitted over wireless channels, if the gaussian random 
interference causes the loss of the crucial transformation 
coefficients, the contents of the reconstructed images will be 
lost obviously and this will reduce the accuracy of the 
subsequent detection and recognition results greatly.  In 
order to solve this problem, this paper proposed an anti-
interfering image reconstruction algorithm based on 
compressed sensing.  This algorithm first confirmed the new 
compressed sensing signals and the new reconstruction 
matrix based on the locations of the compressed sensing 
signal components corresponding to the gaussian-interfered 
bit stream, and then reconstructed the original images 
employing the iterative threshold algorithm.  The simulation 
results demonstrated that the new algorithm reconstructed 
exact images at low bit error rates, and reconstructed 
inexact images whose qualities were slightly lowered without 
loss of local contents at high bit error rates.  As a result, our 
algorithm is able to overcome the deficiencies of compression 
algorithms based on diverse transformations and the 
iterative threshold algorithm, thus proposes a feasible 
solution scheme for the anti-interfering problem that arises 
in wireless image transmission.  

Keywords- anti-interference; compressed sensing; image 
reconstruction; Gaussian random interference 

I.  INTRODUCTION 
In the informational battlefield environment, images 

acquired by air-based or space-based sensors need to be 
transmitted over wireless channels. Because of the bad 
environment that causes the noise of wireless channels 
much larger than that of cable channels, and multi-path 
and shadow fading, the bit error rate of wireless channels 
is very high, seriously reducing the quality of the decoded 
image.  Thus whether the image encoding and decoding 
scheme has strong anti-interfering ability rises to the key to 
ensure the performance of the wireless image transmission 
system. The traditional image encoding and decoding 
scheme, named transformation-based image compression, 
causes obvious image content lack after image 
reconstruction under the situation of lacking important 
transformation coefficients caused by bit error, which 

seriously influences subsequent detection and 
identification results [1]. Therefore, the realization of high-
class image codec on wireless channel is a challenging task. 

Compressed sensing (CS) is a new technology in recent 
years.  CS permits, under certain conditions, signals to be 
sampled at sub-Nyquist rates via linear projection onto a 
random basis while still enabling exact reconstruction of 
the original signal[2,3].  Because the measured CS data has 
excellent anti-interference characteristic[4], this paper 
proposes an anti-interfering reconstruction algorithm of 
image compression based on CS. This algorithm 
reconstructed the images employing the undisturbed part 
of the whole CS data.  Compared with the images 
reconstructed with complete CS data, the overall quality of 
the images reconstructed by our algorithm decreased 
slightly.  Compared with the images reconstructed using 
the data of wavelet transform compression, our 
reconstructed images had no obvious local image loss, so 
the influence on the subsequent detection and recognition 
process was much smaller.  Thus the algorithm is applied 
to wireless image transmission under different levels of bit 
error rate. 

II. THEORETICAL ANALYSIS OF ANTI-INTERFERING 
RECONSTRUCTION ALGORITHM BASED ON CS 

Wherever Times is specified, Times Roman or Times 
New Roman may be used. If neither is available on your 
word processor, please use the font closest in appearance 
to Times. Avoid using bit-mapped fonts if possible. True-
Type 1 or Open Type fonts are preferred. Please embed 
symbol fonts, as well, for math, etc. 

A. Derivation of the anti-interfering reconstruction 
algorithm based on CS 
CS signals transmitted through the wireless channels 

will be disturbed by gauss random noise, resulting in 
distortion of the reconstructed images in different degree, 
eventually leads to decreasing the probability of 
subsequent detection and recognition.  Therefore, it is 
necessary to adopt certain anti-interference measures to 
minimize the impact of gauss random noise on the quality 
of the reconstructed images. 
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The theory of compressed sensing is proposed by E. J. 
Candes, J. Romberg, T. Tao and D. L. Donoho in 2004. 
CS measurement can be expressed as [5]: 

%y =Φf =ΦΨx =Φx                                            (1) 

Among them, Φ  is known as the measurement 
matrix, Ψ is the matrix composed of sparse bases, 
%Φ=ΦΨ  is known as the sensing matrix, and x  is 

sparse signal. 
The measurement %y =Φx  can be extensively written 

as, 
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Each component in y  can be expressed as follows, 

%
kk k = 1, ..., My = x,φ                             (3) 

Among them, %φ k  represents the kth  measurement 
basis. 

If we want to recover the sparse signal x  accurately, 
y  and Φ  should satisfy certain conditions [5].  First is 
that the measurement matrix %Φ  must meet restricted 
isometry property (RIP), 

2
≤ ≤

2 2

2 2 2
%(1 -δ ) x Φx (1 +δ ) x

l l lk k         (4) 

In this formula δk  represents the kth  order restricted 
isometry constant, and x is the kth  order sparse vector.  
Second is that on the premise of original signals being N  
dimensions and kth -order sparse vector, the measurement 
number M  must satisfy the lower limit, 

logM = O(k (N / k))                                (5) 

Now if the bit stream corresponding to the signal y  
passes though the wireless channel full of gaussian 
random interference, then is decoded and directly 
reconstructed, we undoubtedly get the distorted images.  
Now that the results of directly reconstruction are not 
ideal, consider dealing with the interference before 
reconstruction.  Let’s view formula (3).  ky  represents 
the kth  measured component of y .  Assume that we can 

determine the location of each ky  whose corresponded 
bits are disturbed by gaussian noise.  Based on above 
assumption, try to remove completely distorted 
components in y  and the corresponding measurement 

bases, and then reconstruct the images.  Analyze whether 
or not this processing procedure can ensure that the 
reconstructed images are approximate to the optimum 
solution.  The proof is put forward as follows from the 
reconstruction viewpoint. 

B. Proof 
First introduce the incoherence between the matrices. 

The literatures [5,6] have demonstrated that the RIP 
condition that the sensing matrix %Φ  should meet is 
equivalent to the fact that measurement matrix Φ  and 
sparse matrix Ψ  satisfy the incoherence.  Suppose that 
Φ  and Ψ  are all ×N N  orthogonal matrices, then the 
coherence between Φ  and Ψ  is defined as, 

max φ
≤ ≤ ≤ ≤

× k jN
1 k M,1 j N

μ(Φ,Ψ) = ψ                     (6) 

Among them, φk  is in row i of Φ  and jψ  is in 
column j of Ψ .  Obviously μ  measures the biggest 
cross-coherence between an orthogonal basis of Φ  and 
an orthogonal basis of Ψ .  According to Cauchy-
Schwarz inequality, 

≤ ×
2

x, y x, x y, y
                              (7) 

the result that ≤ Nμ(Φ,Ψ) can be drawn.  On the 
other hand, the constraint ≥(Φ,Ψ)μ 1  must still be 

satisfied, otherwise k j
1

n
ψ <φ  will hold, which 

means 
22

k k j

n
1

j=1
= ψ <φ φ∑  and that is conflict with 

that φk is a unit vector.  So the coherence μ  is always in 
the range of [1, n].  Here we care about only the very 

k jψφ  whose value of μ  is small enough, for only when 

1≈μ  the matrix %Φ  satisfies the RIP condition to a high 
probability. 

Now if distorted components in y are removed 
completely and the corresponding measurement bases in 
%Φ  are eliminated, the rest of y  is called 1y , the rest of 

M  is called 1M , and the rest of %Φ  is called 1
%Φ .  

Correspondingly 1 1Φ = ΦΨ% , and 1
%Φ  and 1Φ  become 

×1M N  matrix, then 

max
≤ ≤ ≤ ≤

×1 k jN
11 k M ,1 j N

μ(Φ ,Ψ) = ψφ
                (8) 

By the definition of μ  we can draw the conclusion, 

1( , ) ( , )Φ Ψ Φ Ψμ μ≤  
Based on above conclusion, if it is not coherent 

between Φ  and Ψ , it is not coherent between 1Φ  and 
Ψ .  According to the equivalence relation between 
incoherence and RIP [5,6], 1

%Φ  satisfies RIP condition. 
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It is known that %Φ  satisfies the kth -order RIP 
constraint, therefore, 1

%Φ  is sure to satisfy k1th-order RIP 

constraint.  According to <1M M and the relationship 
between measurement dimension and sparsity that 

logM = O(k (N / k)) , <1k k is derived. 

By =1 1
%Φ 1y x , the k1th-order sparse vector 

1x  can 
be got from the reconstruction algorithm, and 

1x  is 
optimally approximate to x . 

The conclusion is drawn from above proof that 
when ky  in y  is seriously interfered, which results in 
complete distortion, the following measures can be taken 
that removing the distorted components ky  and deleting 

the corresponding measurement bases in %Φ  to satisfy the 
RIP condition again, so that the signal of 

1x  recovered 
can be optimal approximate to x .  This idea can solve the 
problem effectively that if the CS signals are disturbed by 
the gaussian random noise the reconstruction results are 
distorted to varying degrees. 

C. Analysis of anti-interfering reconstruction results 
After the interfered data are removed, the 

reconstruction action is divided into two kinds of 
circumstances as follows. 

• If the remaining number of the dimensions of CS 
signals is not less than the lower limit after 
removing finite measured components, accurate 
reconstruction occurs. 

• If the remaining number of the dimensions of CS 
signals is less than the lower limit after removing 
finite measured components, there are obvious 
quality decline in the reconstruction results.  The 
degree of the decline depends on the quantity of 
remaining CS components.  That is, the less the 
number of the residual components is, the larger 
the errors are. 

D. Procedure of the algorithm 
Block measurement and reconstruction should be 

employed in order to reduce the cost of measurement and 
calculation when the original signals are images, the high 
dimensional data[7,8].  Due to the reasons of being 
convenient to be embedded optimization strategy in 
iterative shrinkage/threshold method (IST) [9] in order to 
eliminate blocking artifacts in the reconstructed images 
and the fast running speed of IST, our anti-interfering 
reconstruction algorithm chooses to take root in IST and is 
called AntiNoise algorithm in this paper. 

The core of IST algorithm is that in the solving 
process, the previous estimated values are filtered by a 
certain threshold so that new estimated values can be 
obtained.  So the most important operations in IST are 
determining the initial values and processing the threshold.  
The update process is shown in formula (9). 

T T
t+1 t t t( ) [ ( )]x Γ x Ψ x Φ y Φxλ λ= = + −     (9) 

In above formula Φ  means projection operator which 
acts directly on the image, t( )Γ xλ  acts as threshold 
processing operator, and ( )Ψ x  denotes the sparse 
transform. 

The steps of AntiNoise algorithm is as Fig.1 . 

 
Fig.1 Flow chart of AntiNoise algorithm 

III. EXPERIMENTAL RESULTS AND ANALYSIS 
The image database used in the experiment is USC-

SIPI Image Database, and the size of the images is 256×
256.  In the experiment AntiNoise algorithm is compared 
with IST.  Different results are obtained by adjusting 
compression ratio (CR), bit error rate (BER) , and sparsity 
from low to high. 

Two original images of the database are listed in Fig.2 
(a) and Fig.3 (a).  Exact reconstruction by AntiNosie 
algorithm is compared with the reconstruction by IST in 
Figure 3, and the related parameters are shown in Table 1 
(a).  From the parameters we can see that the actual 
measured dimension crM  is higher than the lower limit 

M , and the remainder measured dimension recM  after 
the removal of interfered measured components is higher 
than M ,too.  The error of PSNR is slight and there are no 
obvious differences visually between AntiNoise and IST 
by comparing Fig.2 (d) with Fig.2 (b).  Inexact 
reconstruction by AntiNosie algorithm is compared with 
the reconstruction by IST in Fig. 3, and the related 
parameters are shown in Table 1 (b).  crM  is higher than 

the lower limit M , and recM  is lower than M .  The 
error of the images reconstructed by AntiNoise is beyond 
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（a）Exact Reconstruction 
Parameter cr（0.3） sparsity（3992） Mcr（16116） M（17307)

Mrec（19700）ber（3E-5） 
IST AntiNoise IST+noise 

PSNR 24.19 24.13 11.24 

（b）Inexact Reconstruction 
Parameter cr（0.3） sparsity（4882） Mcr（19712） M（18292)

Mrec（3997）ber（4E-2） 
IST AntiNoise IST+noise 

PSNR 21.39 17.57 -35.13 

a cetain range compared to those by IST, and this can be 
observed by comparing Fig.3 (d) with Fig.3 (b). 

 

    
(a) Original   (b) Reconstructed by IST under the condition of no interference 

(c) Reconstructed by IST under the condition of low bit error rate 
(d)  Reconstructed by AntiNoise under the condition of low bit error rate 

Fig.2 Results of exact reconstruction 

    
(a) Original   (b) Reconstructed by IST under the condition of no interference 

(c) Reconstructed by IST under the condition of high bit error rate 
(d)  Reconstructed by AntiNoise under the condition of high bit error rate 

Fig.3 Results of inexact reconstruction 

TABLE I.  PSNR COMPARISON OF EXACT/INEXACT RECONSTRUCTION RESULTS 

   
   
   
   
   
   

The experimental results show that under different 
compression ratios and bit error rates, the quality of the 
reconstructed image by AntiNoise algorithm is improved 
to varying degrees compared with IST. Precise 
reconstruction occurred when the quantity of remaining 
CS components was higher than the measured lower limit, 
and inaccurate reconstruction occurred when the opposite 
happened.  The size of the reconstruction error is 
associated with the differences between the lower limit 
and the number of the remaining components, and the less 
the differences, the less of the size of the error.  

IV. CONCLUSION 
When the images compressed by traditional transform 

compression algorithm are decompressed after transmitted 
through the gaussian white noise wireless channels, the 
content of the images may be defective, thus severely 
degrade the performance of detection and recognition.  At 
low bit error rates, the anti-interfering reconstruction 
algorithm of image compression based on compressed 
sensing is able to ensure the overall quality of the 
reconstructed image approaching that in an error free 
condition.  Under high bit error rates the algorithm ensures 
that the decrease of the overall image quality occur instead 
of local image deficiency, which satisfies the need of 
subsequent detection and recognition tasks.  In a word, the 

algorithm provides a feasible solution for the gaussian 
noise problem of the wireless channel. 

The next step is to select appropriate detection and 
recognition algorithms to detect the image reconstructed 
by our algorithm, and further validate the effectiveness of 
our algorithm according to the detection probability. 
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