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Abstract

The transition from Eulerian to Lagrangian coordinates is a nonlocal transformation.
In general, isomorphism should not take place between basic Lie groups of studied
equations. Besides, in the case of plane and rotational symmetric motion hydrody-
namic equations in Lagrangian coordinates are partially integrated. This fact intro-
duces arbitrary functions, initial data, to the resulting systems and makes cuurently
central the problem of group classification. It is stated that under a transition to
Lagrangian coordinates, the main group becomes infinite–dimensional as well in space
coordinates. The exclusive values of arbitrary functions of Lagrange coordinates (vor-
ticity, momentum), at which the further group widening takes place, are found in
[1].

In this paper, the group properties of equations in Lagrange variables for nonuniform liquid
are studied. The problem of group classification of these equations on functions of initial
density is solved. Exact invariant solutions are obtained. As a rule, new obtained exact so-
lutions describe nonstationary vortex motions. The solution representations in Lagrangian
coordinates include arbitrary functions of time and space coordinates. This allows us to
consider different invariant initial boundary problems. We emphasize that the majority
of these solutions could hardly be found considering the equations of hydrodynamics in
Euler variables.

1. Let us consider the equations of nonuniform heavy liquid

ut + uux + vuy +
1
ρ
px = 0, vt + uvx + vvy +

1
ρ
py = −g, (1)

ρt + uρx + vρy = 0, ux + vy = 0,

where ρ(x, y, t) is the liquid density, g = const > 0 is the acceleration of gravity, (u, v) is
the velocity vector, and p(x, y, t) is the pressure of liquid. It is of common knowledge that
there are nine infinitesimal generators of a finite symmetry group [1]

X1 = ∂x, X2 = ∂y, X3 = ∂u + t∂x, X4 = ∂v + t∂y, X5 = ∂t,

X6 = t∂t + 2x∂x + 2y∂y + u∂u + +v∂v + 2p∂p,
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X7 =
(
y +

1
2
gt2

)
∂x − x∂y + (v + gt)∂u − u∂v, (2)

X8 = t∂t + x∂x +
(
y − 1

2
gt2

)
∂y − gt∂v, X9 = ρ∂ρ + p∂p.

Additionaly, there is a generator X10(ϕ) = ϕ(t)∂p which depends on one arbitrary
function of time.

2. Now we rewrite equations (1) in a more convenient form using the Lagrangian coordi-
nates ξ and η which are defined by a solution of the Cauchy problem

dx

dt
= u(x, y, t), dy

dt
= v(x, y, t), x|t=0 = ξ, y|t=0 = η. (3)

In such a case, the third equation of system (1) is integrable and we have

ρ(x(ξ, η, t), y(ξ, η, t) = ρ0(ξ, η) ≡ R−1(ξ, η), (4)

where ρ0(ξ, η) is an initial density.
By substituting the functions x(ξ, η, t), y(ξ, η, t), p(ξ, η, t) and (4) in Eq. (1), we get

a new system

xtt +R(ξ, η)(yηpξ − yξpη) = 0, ytt +R(ξ, η)(xξpη − xηpξ) = 0, (5)

xξyη − yξxη = 1.

Here we put g = 0.
In order to construct the group on the solution, one should first of all find the point

transformation group that is admitted by the differential manifold given by system (5).
An infinitesimal operator of this point group

Y = µ1∂t + µ2∂ξ + µ3∂η + τ1∂p + τ2∂x + τ3∂y

is calculated from the determining equation for coordinates µ1 and τ i following the scheme
standard for the group analysis. However, here we have to solve the problem of group
classification with respect to the function R(ξ, η) > 0. After some computations, from the
determining equations, the following representations for µi and τ i have been found

µ1 = c1 + c2t, µ2 = µ2(ξ, η), µ3 = µ3(ξ, η),

τ1 = τ1(t, x, y, p), τ2 = c3x+ c4y + g1(t), (6)

τ3 = c3y − c4x+ g2(t),

where g1(t), g2(t) ∈ C∞ are arbitrary functions, c1, ..., c4 are arbitrary constants. The
functions µ1, µ2, τ1 are the solution of the determining system

µ2
ξ + µ2

η = 2c3, µ2Rξ + µ3Rη = (2c3 − 2c2 − τ1
p )R, (7)

Rτ1
x + g1(t) = 0, Rτ1

y + g2(t) = 0.
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It can be easily shown that general equivalence transformations for system (5) are

t̄ = a1t+ a2, ξ̄ = a3α(ξ, η), η̄ = a3β(ξ, η),

x̄ = a3(x cos a4 + y sin a4) + a5t+ a6, ȳ = a3(y cos a4 − x sin a4) + a7t+ a8, (8)

p̄ = a−2
1 a2

3a
−1
9 p+ ϕ(t), R̄ = a9R(ξ̄, η̄),

where a1, ..., a9 are constants and a2 > 0, a3 > 0, a9 > 0.
Using the equivalence transformations (8), structures of solutions of the determining

system (7) is investigated. The result of the group classification obtained here is shown in
Table 1.

T a b l e 1

R(ξ, η) generators remarks
1. arbitrary L = Y1, Y2, Y3, Y4, Y5, Y6, Y7, Yϕ

2. 1 L, Y8, Yg1 , Yg2 , Y∗ ideal liquid
3. ξ, (Rξ 6= 0) L, Y9, Y10, Yb

Y1 = ∂t, Y2 = t∂t − 2p∂p, Y3 = y∂x − x∂y, Y4 = t∂x,

Y5 = ∂x, Y6 = t∂y, Y7 = ∂y, Yϕ = ϕ(t)∂p, Y8 = ξ∂ξ+

+η∂η + x∂x + y∂y + 2p∂p, Yg1(t)∂x − g̈1(t)x∂p,

Yg2 = g2(t)∂y − g̈2(t)y∂p, Y∗ = ψη∂ξ − ψξ∂η,

Y9 = η∂η − ξ∂ξ + p∂p, Y10 = 2ξ∂ξ − 2η∂η+

+x∂x + y∂y, Yb = b(ξ)∂η,

where ϕ(t), g1(t), g2(t), ψ(ξ, η), b(ξ) are arbitrary functions and ġ1 6= 0, ġ2 6= 0.

Now we shall claim the invariance of the initial data (3) x = ξ, y = η, t = 0. It gives
us a more detailed group classification of system (5) with respect to the function R(ξ, η).

Complete results are given in Table 2.
Of course, the cases 6 or 7 are more convenient to be studied in polar coordinates.

4. Let us consider several examples of exact solutions of equations (1) and (5).

Example 1. Let R = R(η), then system (5) admits the two–dimensional subgroup
< ∂ξ, ∂x >. The partially–invariant solution of rank 2 and defect 1 is sought in the form

x = x(ξ, η, t), y = y(η, t), p = p(ηt). (9)

By substituting the invariant forms of solution (10) into Eqs. (5), we obtain

x = [1 + a0(η)t]ξ + b0(η)t, y =
∫

dη

1 + a0(η)t
, (10)

p = −
∫
ρ0(η)ytt(η, t)dη

1 + a0(η)t
+ ϕ(t)



SYMMETRIES OF EULER EQUATIONS IN LAGRANGIAN COORDINATES 199

with arbitrary functions a0(η), b0(η), ρ0(η) ≡ R−1(η), ϕ(t). It describes unsteady rotational
flows of liquid in the plane layer with one or two free surfaces.

Remark 1. The initial manifold is not invariant with respect to the subgroup < ∂ξ, ∂x >,
however, as follows from (11), x = ξ, y = η when t = 0.

T a b l e 2

R(ξ, η) generators
1. arbitrary L = {Y1, Y4, Y6, Yϕ}
2. 1 homogeneous liquid L, Y2, Y3, Y5, Y7

3. F (γ1ξ + β1η) exp(γ2ξ + β2η) L, β1Y5 − γ1Y7 + (γ1β2 − γ2β1)Y8

4. exp(γξ + βη) L, Y5 − γY8, Y7 − βY8

5. (γξ + βη)α L, Y2 − αY8, γY7 − βY5

6. F (β1 arctan(ξ/η) + γ1 ln(ξ2 +
+η2)(ξ2 + η2)γ exp(β2 arctan(ξ/η))

L, β1Y5 − 2γ1Y3 + 2(γ1β2 − γ2β1)Y8

7. (ξ2 + η2)γ exp(β arctan(ξ/η)) L, Y2 − 2γY8, Y3 − βY8

Y1 = t∂t − 2p∂p, Y2 = ξ∂ξ + η∂η + x∂x + y∂y + 2p∂p,

Y3 = η∂ξ − ξ∂η + y∂x − x∂y, Y4 = t∂x, Y5 = ∂ξ + ∂x, Y6 = t∂x,

Y6 = t∂y, Y7 = ∂η + ∂y, Y8 = p∂p, Yϕ = ϕ(t)∂p;

F ∈ C∞ is an arbitrary function; β, γ, β1, γ1, β2, γ2, α are constants,
α 6= 0, β2 + γ2 6= 0, β2

1 + γ2
1 6= 0; if β1 · γ1 · β2 · γ2 6= 0 then γ2β1 + γ1β2 = 0

Example 2. If R = exp(γξ + βη), then the subgroup < ∂ξ + ∂x − γp∂p > is admitted
(see the case 4 from Table 2, where γ 6= 0). The invariant solution has the form

x = ξ +X(η, t), y = Y (η, t), p = P (η, t) exp(−γξ),

and, hence, we get from Eqs.(5)

Y = f(t) + η, f(0) = 0, Xtt − γeβηP = 0, XηXtt + ftt + eβηPη = 0.

Eliminating P from the third equation, we obtain

XηXtt −
β

γ
Xtt +

1
γ
Xηtt + ftt = 0. (11)

Let us assume that flow is uniform along the y axis, i.e. ft = v0 = const. In such a, case
P = µ(t) exp(−γX) with an arbitrary µ(t) and the function Z = X − βη/γ is a solution
of ODE

Ztt − γµ(t) exp(−γZ) = 0.

For µ(t) = µ0 = const, the last equation has integrals depending on Xt|t=0 = u0(η):

X =
β

γ
η − 1

γ
ln

{ d

µ0[ch(γ
√
d(t+ c))− 1]

}
, (12)
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if d(η) ≡ u2
0(η)− 2µ0 exp(βη) > 0;

X =
β

γ
η − 1

γ
ln

{
− d

µ0[cos(γ
√
−d(t+ c)) + 1]

}
, (13)

if d(η) < 0;

X =
β

γ
η − 1

γ
ln

[ 4
µ0γ2(t+ c)2

]
, (14)

if d(η) = 0. The function c(η) can be determined from the initial condition X(η, 0) = 0.
The density of liquid is constant on the lines γξ + βη = const. During the time, these

lines are deformed according the formula

γ[x−X(y − v0t, t)] + β(y − v0t) = const,

where X is defined by (13), (14), or (15).
The another solution can be obtained if we suppose that X is linear with respect to η.

Integrating the system (5), we have

x = ξ + a0tη + b(t), y = η + f(t), b(0) = f(0) = 0, (15)

p =
1
γ
btt exp(−γξ − βη) + ϕ(t),

where a0 is a constant and f(t), b(t), ϕ(t) are arbitrary functions with (a0t−β/γ)btt+ftt =
0. The line γξ + βη = const can be considered as a free surface one.

Example 3. For R = R(ξ2 + η2), system (5) admits the subgroup of rotations < η∂ξ −
ξ∂η + y∂x − x∂y > (see the case 6, Table 2, where β1 = β2 = 0). Introducing polar
coordinates x = r cos Θ, y = r sinΘ, ξ = β cosα, η = β sinα in (5), we get a new
system for the unknown functions r(β, α, t), Θ(β, α, t), p(β, α, t)

rβ(rtt − rΘ2
t ) + Θβ(r2Θt)t +Rpβ = 0,

rα(rtt − rΘ2
t ) + Θα(r2Θt)t +Rpα = 0, r(rβΘα − rαΘβ) = β. (16)

The generator η∂ξ − ξ∂η + y∂x − x∂y transforms to the generator ∂Θ + ∂α and an
invariant solution has the form

r = r(β, t), Θ = α+ ϕ(β, t), p = p(β, t).

Equations (5) now imply

r = (β2 + C(t))1/2, ϕt = B(β)(β2 + C(t))−1, (17)

p =
∫

rβ
R(β)

(rtt − rϕ2
t )dβ + µ(t)

with arbitrary functions C(t), C(0) = 0, B(β), µ(t). This solution describes rotational ring
motion with free surfaces

r1(t) = (β2
1 + C(t))1/2, r2(t) = (β2

2 + C(t))1/2, β2 > β1 ≥ 0.
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The function B(β) is connected with vorticity w0(β) of liquid by the formula B(β) =∫
ρw0(ρ)dρ.

Example 4. Let us consider arbitrary Lagrangian coordinates (a, b) defined by ξ = α(a, b),
η = β(a, b). In terms of these variables, (5) become

xaxtt + yaytt + yag +Rpa = 0, xbxtt + ybytt + ybg +Rpb = 0,

xayb − xbya = S(a, b), (18)

where 1/R = ρ0(a, b) is an initial density and S = αaβb−αbβa is the Jacobian of the map
(a, b) → (α(a, b), β(a, b)).

The system (18) admits the subgroup < 1
c∂t−∂a−∂x > when R = R(b) and S = S(b).

It is easy to verify that the invariant solution has the form

x = a+
1
k

exp(kb) sin k(a+ ct), y = b+
1
k

exp(kb) cos k(a+ ct),

p = g

b∫
b0

1
R(b)

(e2kb − 1)db, (19)

where k, c, b0 are arbitrary constants, c2 = g/k. The solution (19) describes famous Ger-
stner’s waves on a free surface of nonhomogeneous fluid.
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