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Abstract. In this paper, the hybrid regularization based scheme for image restoration is

researched in detail. This strategy contains two regularization items, which helps to achieve

superior image reconstruction. To quickly minimize the energy functional, we adopt the fast

split Bregman iteration method. Numerical simulations distinctly demonstrate the superiority

of our advanced scheme for image recovery over the traditional method.
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1. Introduction

Image restoration is an inverse problem, which has been widely applied in various areas. Recently,

partial differential equation based approaches for image recovery have made tremendous progress. The

pioneer idea proposed by Tikhonov and Arsenin [1] can be characterized as follows

min
u

∫
Ω

|∇u|2 + λ
2

∫
Ω

|Ku − f |2dx, (1.1)

where u denotes the original image, f is the observed degraded image, and K stands for a bounded linear

blur operator of L2(Ω). They minimized this energy successfully when u ∈ W1,2(Ω). Objectively, this

scheme has the capability to remove noise well, but frequently causes edge blur.

To better recover and preserve the important edge details, Rudin, Osher, and Fatemi [2] proposed the

following total variation (TV) regularization based image restoration algorithm (the ROF model)

min
u

∫
Ω

|∇u| + λ
2

∫
Ω

|Ku − f |2dx. (1.2)

This method maintains edges well while removing noise. For this reason, the classical ROF method

has been studied by scholars at home and abroad, and emerged some fast numerical algorithms, such as

fixed-point iteration method [3-7], dual method [8-9], augmented Lagrangian method [10-13], Bregman
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iteration [14-16], linearized Bregman iteration [17-21], and split Bregman iteration [16,22-25], alternating

minimization and alternating direction algorithm [26,27], etc.

Unfortunately, the disgusting “staircase effect” inevitably arises in the homogeneous smooth region

of the image caused by the ROF model. For better improving the quality of the recovered image, sev-

eral authors investigated the hybrid regularization based schemes. For instance, total bounded variation

regularization model [28], total variation and Besov regularizers [23], a hybrid of H1 norm and TV norm

regularizers [29-32]. Moreover, to reduce the staircasing effect, Tony et. al. [33] investigated the mixed

regularization models for image decomposition and restoration.

Enlightened by the models mentioned above, we propose the following scheme:

min
u

∫
Ω

|∇u| + α
2

∫
Ω

|∆u|2 + β
2

∫
Ω

|Ku − f |2dx, (1.3)

where Ω is an open bounded domain with Lipschitzian boundary, α and β denote the given positive

parameters. An important remark is that, when α = 0, the model (1.3) can be changed into the classical

ROF model (1.2). Complementally, for the proposed model (1.3), the TV regularization has the capability

for preserving the edge details. The higher order derivative, located in the second term of (1.3), can be

used for reducing the staircasing effect drastically.

The rest of this paper is arranged as follows. Section 2 focuses on the numerical algorithm: split

Bregman iteration for solving the proposed scheme. Results of numerical experiments to indicate the

better image reconstruction ability of our novel model, compared with the classical TV regularization

based version, are shown in Section 3. Finally, the conclusion is given in Section 4.

2. Numerical algorithm

In this section, our objective is to employ the split Bregman iteration for minimizing the energy func-

tional (1.3). Namely, we want to solve the following optimization problem

u = arg min
u
∥∇u∥1 +

α

2

∫
Ω

|∆u|2 + β
2

∫
Ω

|Ku − f |2dx. (2.1)

The split Bregman iteration initially introduced in image processing by Goldstein and Osher [23], can ef-

fectively solve this nondifferential problem. By introducing an auxiliary variable, they solved the differen-

tiable L2 norm problem rather than the non-differentiable L1 norm one. To some extent, this manipulation

can significantly increase the speed of numerical calculation.

Motivated by the ideas of [23], we firstly replace ∇u by d. This leads to the constrained problem as

follows

min
u,d
∥d∥1 +

α

2

∫
Ω

|∆u|2 + β
2

∫
Ω

|Ku − f |2dx, such that d = ∇u. (2.2)

To make (2.2) easier to solve, we equivalently transform it into an unconstrained one as

min
u,d
∥d∥1 +

α

2

∫
Ω

|∆u|2 + β
2

∫
Ω

|Ku − f |2dx +
γ

2
∥d − ∇u∥22. (2.3)
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Then the elegant split Bregman iteration method solves (2.1) can be depicted as

(uk+1, dk+1) = arg min
u,d
∥d∥1 +

α

2

∫
Ω

|∆u|2 + β
2

∫
Ω

|Ku − f |2dx +
γ

2
∥d − ∇u − bk∥22, (2.4)

bk+1 = bk + (∇uk+1 − dk+1). (2.5)

Obviously, the system (2.4) consists two decoupled u and d subproblems. Given u0 = 0, d0 = b0 = 0 and

fixed the inner iteration to be one, then we get the following alternating split Bregman method
uk+1 = arg min

u
α
2

∫
Ω
|∆u|2 + β2

∫
Ω
|Ku − f |2dx + γ2 ∥∇u − dk + bk∥22,

dk+1 = arg min
d
∥d∥1 + γ2 ∥d − ∇uk+1 − bk∥22,

bk+1 = bk + (∇uk+1 − dk+1).

(2.6)

The subproblem for u can be easily solved by the fast Fourier transform method by the following

formula:

uk+1 = [βKT K + α∆2 − γ∆]−1(βKT f + γ∇T (dk − bk)). (2.7)

As for the d subproblem, mentioned in the second equation of (2.6), we apply the soft shrinkage

operator of Wavelet analysis to solve the numerical difficulties caused by the non-differentiable term.

As a conclusion, these manipulations lead to an alternating minimization algorithm for solving the

proposed methodology (1.3), displayed in Algorithm 1.

Algorithm 1: Split Bregman iteration for solving the model (1.3)

Initialization: u0 = 0, and d0 = b0 = 0;

While ∥uk+1 − uk∥2 > tol

Compute uk+1 = [βKT K + α∆2 − γ∆]−1(βKT f + γ∇T (dk − bk)),

Compute dk+1 = max(∥∇uk+1 + bk∥2 − 1
γ , 0) ∇uk+1+bk

∥∇uk+1+bk∥2 ;

Update bk+1 = bk + (∇uk+1 − dk+1).

end

3. Numerical simulations

This section is devoted to illustrate the feasibility of our proposed scheme. We have compared our

proposed method against the TV regularization based version. In order to quantitatively evaluate the

image quality, we employ the signal noise ratio (SNR) as

SNR = 10 · log10

(∑i, j[u(i, j) − ū(i, j)]2∑
i, j[n(i, j) − n̄(i, j)]2

)
, (3.1)
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where ū and n̄ stand for the means of the image u and the noise n, respectively. Generally, a higher SNR

value implies the better quality image.

In Figure 1, we display the recovered results by applying two different models for image denois-

ing. Concretely, Figure 1(a) is a clean lenna image with size 256 by 256. Figure 1(b) (SNR=12.19 dB)

represents its degraded version by adding zero mean Gaussian noise with noise intensity 0.05. Our re-

sult, Figure 1(d) (SNR=16.91 dB), has a higher SNR value than that of the ROF model (Figure 1(c):

SNR=16.79 dB). Meanwhile, to intuitively show the superiority of our proposed scheme, their local en-

larged images are displayed in Figure 2, respectively. From Figure 2, it is distinct to observe that our

recovered image (Figure 2(d)) has less staircasing effect than that of the ROF method (Figure 2(c)). Both

recovered results are obtained by iterating 13 times. Moreover, the parameters for computing the hybrid

regularization model are set to α = 0.005, and β = 4. These show that the better reconstruction capabilities

of our proposed novel scheme.

(a) Original image (b) Degraded image

(c) The ROF model (d) Our proposed scheme

Figure 1: Recovered results via our proposed method and comparisons with that of the ROF model.
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(a) Original image (b) Degraded image

(c) The ROF model (d) Our proposed scheme

Figure 2: Recovered results via our proposed method and comparisons with that of the ROF model.

4. Conclusion

This article investigates the hybrid regularization based scheme for image restoration. To quickly

minimize the energy functional, we propose the split Bregman iteration method. In comparison with

the TV regularization based model, numerical results evidently demonstrate that our proposed strategy

possesses the advantage in better improving the image reconstruction quality.
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