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Abstract The object tracking problem is an important research topic in computer 

vision.  For real applications such as vehicle tracking and face tracking, there are 

many efficient and real-time algorithms.  In this study, we will focus on the 

Lucas-Kanade (LK) algorithm for object tracking.  In the standard LK method, sum 

of squared errors is used as the cost function, while least trimmed squares is adopted 

as the cost function in this study.  The resulting estimator is robust against outliers 

caused by noises in the tracking process.  Simulation is provided to show that the 

proposed algorithm outperforms the standard LK method in the sense that it is robust 

against the outliers in the object tracking problem. 
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1 Introduction 

The Lucas-Kanade (LK) algorithm was originally proposed by Lucas and Kanade in 

1981 [1], which makes use of the spatial intensity gradient of the images to find a 

good match using a type of the Newton-Raphson iteration.  The goal of the standard 

LK algorithm is to minimize the sum of squared errors (SSE) function between the 

template and the warped image region by adjusting the warping parameters. 

Based on the theory of robust statistics, various types of cost functions were 

adopted in many pratical applications such as regression.  One of the main 

approaches to robust regression involves M-estimation [2-6].  The M-estimator is 
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found to be robust to outliers in the response variable, but turned out not to be 

resistant to outliers in the explanatory variables, called leverage points.  In fact, 

when there are outliers in the explanatory variables, the method has no advantage 

over least squares.  In the 1980s, several alternatives to M-estimation were proposed 

as attempts to overcome the lack of such resistance.  Least trimmed (sum of) 

squares (LTS) is a viable alternative [7-10]. 

There are several robust LK algorithms proposed in following literatures.  The 

M-estimators were adopted to LK models for tracking problems in [11-15].  The 

basic idea is to replace the cost function SSE by Huber or Hampel function so that 

the effects of outliers may be degraded.  In [11], the authors generalized the LK 

approach to histogram-based tracking algorithm.  It establishes a closer link 

between template matching and histogram-based tracking methods.  Schreiber [12] 

proposed a novel variant of the LK algorithm for tracking bilaterally symmetric 

planar objects from a moving platform.  This algorithm was capable to cope with 

any warping transformation and can be generalized for the case of objects possessing 

higher symmetry.  According to analysis of data distributions, Senst et al. [13] 

proposed a robust local optical flow approach based on a modified Hampel estimator 

with robust characteristics.  Fan et al. [14] proposed a robust template tracking with 

weighted active drift correction.  The minimization of active drift correction is 

achieved by the inverse compositional algorithm, which consists of the tracking term 

and the drift correction term.  In [15], a robust LK template matching algorithm was 

based on evidence which is accumulated over many frames.  This algorithm 

described the drift-correcting and used robust weights that are being updated from 

frame to frame.  The previous papers emphasized robust inverse composition 

algorithm using a robust Huber or Hampel cost functions.  However, there are many 

other methods for robust LK algorithm such as robust measurement of ocular torsion 

[16], visual tracking and learning [17], and graph-based transductive learning [18]. 

The LTS estimator is highly resistant to leverage points, and is robust to outliers in 

the response.  When we expect there to be some number of observations in the data 
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that we wish to put no weight in the modeling, LTS estimator is usually a good 

choice.  The percentage of the data that we wish to put no weight is termed the 

trimming percentage or trimming parameter, and this parameter is usually 

pre-specified for the data at hand.  In this study, the main idea of this study is to 

utilize the resistant property of the LTS estimators in the LK algorithm (LTS-LK) for 

object tracking problems when there are outliers caused by, for instance, noises and 

occlusions.  The updating rules for the warping parameters using LTS-LK approach 

will be derived.  A simulation is provided in this paper, for book-object tracking.  

The simulation result shows that the proposed method can effectively track the object 

when salt-and-pepper noises corruption.  

The rest of this paper is organized as follows.  In Section 2, we outline the 

standard LK algorithm.  Section 3 presents the detail of the proposed LTS-LK 

method.  A experimental results is provided in Section 4 to verify the performances 

of the proposed method.  Finally, a conclusion is made in Section 5. 

2 Lucas-Kanade Algorithm 

Template tracking of an object in a video sequence is performed by extracting a 

template in the first frame and then finding the region which matches the template as 

close as possible in the surplus frames.  The goal of LK method is to align a 

template image )(xT  to an input image )(xI , where Tyx ][x  is a column 

vector representing the pixel coordinates.  Let );( pxW  denote the parameterized 

set of allowed warps, where Tpp ][ 61 p  is a vector of warping parameters.  

Here, we consider the following set of affine warps 
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The best match to the template in the new frame is found by minimizing the 

following SSE function 
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where );( pxW  is defined in (2.1) and the sum is performed over all of the pixels 

x  in the template image )(xT .  Suppose a current estimate of p  is known and 

we wish to compute an appropriate increment p .  The minimization problem in 

(2.2) can then be converted to 
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Performing a first-order Taylor series expansion on   ppxW ;I  at 0p  in 

(2.3) yields 
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where  TyIxII   is the gradient of the image I  evaluated at  pxW ; .  

The term pW   is the Jacobian of the warp.  An approximate solution can be 

obtained by taking the partial derivatives of (2.4) with respect to p  and setting 

them to zero.  It is easy to derive that this approximate solution is given by 
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where H  is Gauss-Newton approximation to the Hessian matrix 
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Finally, the parameters are updated as ppp  , and the process is iterated until 

the estimate of parameters p  converge or the pre-specified stopping criterion is 

met. 

3 Robust Lucas-Kanade Algorithm 

Let nX   and pY  .  Suppose we are given the training set 

   YXdxS
l

qqq 
1

,: .   

In the following, we will use the subscript q to denote the qth observation.  For 

instance, qix  denotes the ith component of the qth input 
n

qx  , lq , ni .  

The residual (or error) qke  at the kth component of the difference between the 

929



desired output qkd  and the predicted output qky  due to the qth observation is 

defined by 

qkqkqk yde : , lq , pk .  

The LTS approach is to choose parameters that minimize the total sum of trimmed 

squared errors given by 
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where ll *  and the penalizing weight  ja  is defined by 
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1 ... klk ee   are 

the ordered values of 2

1ke , …, 2

lke .  A popular choice of *l  is 

    212*  nll , where  b  indicates the largest integer less than or equal to b.  

In the following, the term   lll *  is referred to as the trimming percentage. 

To address the object tracking problems when there are outliers caused by, for 

instance, noises, we will use sum of trimmed squared errors instead of the 2l -norm.  

Consequently, the goal of the LTS estimator is to find the parameters p  of LK 

algorithm that minimize the cost function defined by 
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It is not difficult to derive that the variable p  can be calculated as 
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where the robust Hessian matrix is 
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The flowchart of the proposed LTS-LK algorithm is shown in Fig. 3.1.   
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Fig. 3.1 Flowchart of LTS-LK algorithm. 

4 Experimental Simulation 

In this section, we compare the performances of standard LK and the LTS-LK 

algorithms for object tracking.  Emphasis is put particularly on the robustness 

against outliers.  Simulation programs are implemented using Borland C++ Builder 

6.0 running on Microsoft Windows 7, Intel Core 2 Quad CPU, and 4-GB RAM 

platform. 

To demonstrate the robustness of the proposed algorithm, we present an 

object-tracking experiments, consisting of one “book-tracking” video sequences.  In 

Example 1, the frames after the 100
th

 of the “book” sequence are corrupted by 

salt-and-pepper noises in which a corrupted pixel has the intensity of 0 or 255.  The 

trimming percentage used in our simulations is 5%.  In the simulation, we set 20 as 

the maximal number of iterations and 0.0001 as the minimal change of p .  The 
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iteration stops when either of the two conditions is met. 

Example 1.  The "book" sequence is of size 240320  containing 250 frames in 

which the object to be tracked is the book.  In this experiment, the initial bounding 

box size is 8060  pixels and contains about 6.25% of the frame size.  Simulation 

results are shown in Fig. 4.1.  The first and second rows show the results of the 

standard LK and the proposed LTS-LK algorithms, respectively.  To demonstrate 

the robustness of LTS-LK algorithm, we randomly corrupt the video sequence with 

20% noises, about 15,360 pixels, in the frames after the 100
th

 frame.  As observed, 

the standard LK algorithm fails to track the object in the 160
th

 frame (the 3
rd

 column), 

whereas our LTS-LK algorithm can effectively track the “book” object. 

LK  

algorithm 

    

LTS-LK 

algorithm 

    

 Frame 1 Frame 100 Frame 160 Frame 190 

Fig. 4.1 Results of “book-tracking” sequence. Salt-and-pepper noises are added after 

Frame 100. 

5 Conclusion 

The main issue of this paper is the robustness against outliers caused by noises in the 

video object tracking problems.  The proposed robust algorithm adopts the LTS 

scheme for the LK algorithm.  Experimental results show that the proposed LTS-LK 

algorithm outperforms the standard LK.  It is noted that SSE minimization criterion 
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is used in standard approach to search the optimal parameters.  However, it is 

known that the estimation of parameters based on least squares criterion is vulnerable 

to outliers.   
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