
 

Image Denoising Based on the Modied ROF Model 

Yan Jiang
 1
 and Shu-Ling Zhang

1
 

Abstract：In this paper a new image denoising model based on the ROF model is 

proposed. This proposed model can reduce the noise effect and also damp the staircase 

effect generated by the ROF model. Existence and uniqueness of solution are proved. 

Numerical examples illustrate advantages of our proposed model. 
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1 Introduction 

Digital images, no matter what their source, usually introduce some random noise. 

Consequently, 

a fundamental problem in image processing is the image restoration. Early methods for 

doing this were based on least squares and had the unfortunate property of either 

smoothing edges or creating spurious oscillations near edges, i.e., the well known 

ringing phenomenon 
[1, 2]

. But for digital images the most remarkable characteristics 

are edges and textures. So many researchers have been devoted efforts to the study of 

modified models in order to reduce this phenomenon that can eliminate noise and 

simultaneously preserve edges and small scale characteristics. Among the modified 

models, the variational models have been extremely successful in a wide variety of 

image restoration problems and still remain one of the most active areas of research in 

mathematical image processing and computer vision. The typical variational model is 

the ROF model 
[3]

. Let u be the original image, f is the observed image and η is the 

additional noise. Then the degradation image can be modeled as follows: 

f = u + η.                                                   (1.1) 

Thus, the ROF model is written as follows: 

min
)(BVu

,
2

2

1
2

BVu
L

fu                         (1.2) 
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where BV (Ω) denotes the space of functions with bounded variation on Ω and |.| 

denotes the BV seminorm defined by 

.22 dxdyuudxdyu
BV

u yx 
             (1.3) 

As a result, with the norm 
BV

u
L

u
BV

u  1 , BV (Ω) is a Banach space 
[4]

.  

In the above 

ROF model, if k is identity, the corresponding problem is called a denoising problem. 

In this paper we assume k is identity unless otherwise it is stated. 

In the ROF model, λ is a tuning parameter. Small λ corresponds to very little noise 

removal, and hence u is close to f. Large λ yields a blurry, oversmoothed u. The first 

term in the energy functional in 
[4]

 is the fidelity term. The second term is the 

regularization term to remove noise or small details. The ROF model does an excellent 

job in preserving edges since the diffusion with this PDE is along edges.  

However, the ROF model often causes “staircase” effects since it favors solutions 

that are piecewise constant
[5]

. Staircase solutions fail to satisfy the eye and they can 

develop “false edges” that do not exist in the true image. To overcome this spurious 

limitation, in the recent decade, some higher-order PDEs have been introduced in 

image restoration
[7, 8, 10, 11]

. Fourth-order linear or nonlinear diffusion requires much 

stronger smoothness and can damp oscillation much faster than second-order diffusion. 

On the other hand, fourth-order PDEs usually evolve an observed towards an almost 

smooth image and make image look more natural. But these models increase calculated 

costs by solving related fourthorder PDEs. Recently, Chan and Esedoglu proposed to 

replace the fidelity term in ROF model by |u − f|L
1
 in 

[9]
. It has a good restoration but 

this energy function is not strictly convex, so the solution is not unique. On the other 

hand it has two nonsmooth terms, so it increases the calculating difficulty. In this paper 

we propose a modified ROF model that can effectively damp the staircase effects and 

have a unique solution. Simultaneously, this model do not require more calculated costs 

than PDEs. Then the modified model for modified ROF model(MROF) is proposed as 

follows: 

min
)(BVu

),
22

(
2

2

2

1
222 L

u
L

uTVu
L

fu 


          (1.4) 

where λ > 0 is the coefficient of regularity term and α > 0 is the coefficient of penalty 
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function.  

The plan of the paper is as follows. We fist recall some models that are mentioned 

in the above literature and propose our modified model. In section 3, numerical results 

are represented to demonstrate the effectiveness of the proposed model. Some 

concluding remarks are presented in last section. 

2 A Modied ROF Model for Image Restoration 

In this section we state several basic definitions and deduce some related results. 

We assume H is the Hilbert space and let C be a subset of H. We also assume f∗ is a 

minimizer of the functional J. 

Definition 2.1.  J : H → R is weakly lower semicontinuous if 

),(lim)( n
n

fJfJ


   

whenever   ffn  

Definition 2.2.  A functional J : H → R is coercive if 

                                   ,)( nfJ  

whenever nf . 

In [1], vogel gave the existence and uniqueness of the minimizer of J. 

Lemma 2.1. Assume that J : H → R is weakly lower semicontinuous and coercive 

and that C is a closed, convex subset of H. Then J has a minimizer over C. If J is also 

strictly convex, then the minimizer is unique. In this paper, we always assume that λ >> 

α. For notational simplicity, we denote the 

objective function in the modified model (1.4) as 

)(uF ),
22

(
2

2

2

1
222 L

u
L

uTVu
L

fu 


             (2.1)  

Theorem 2.1. Assume f ∈  BV (Ω ) and λ  >> α . Then the minimization 

problem (1.4) exists a unique solution.  

Proof. We notice that: if λ >> α , then F is weakly lower semicontinuous and coercive 

and F is finite for at least one BV image u. Simultaneously, a sequence of images in BV 

(Ω) with bounded F values must be bounded as in BV (Ω) and BV (Ω) can be 

compactly embedded in L
1
(Ω). So, by Lemma 2.1, it is not difficult to deduce that the 
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minimizer of F exists and is unique.  

Theorem 2.2. If the minimization problem (1.4) satisfies Neumann adiabatic 

condition 0




n

u
. 

along the boundary ∂Ω. .Then the solution of (4) satisfies the following Euler-Lagrange 

equation 

f
u

u
uu 




 )()1(


 .                       (2.2) 

Proof. For every ),(1

0 Cv the directional derivative of F(u) is given by 

 vuF
d

d



 

/

0|  = 

0| 
d

d
{ dxdyfvu

2

2

1
    dxdyvu    

                    - dxdyvu
2

)((
2   


)
2

dxdyvu   } 

=   



  

dxdy
u

vu
vdxdyfu   

 dxdyuvvdxdyu  
 . 

Recall the Green’s formulas which take the form  

    
 VvdxdyNvdsVvdxdyV , 

where N = (n1, n2) is the unit outer normal vector of ∂(Ω) and
u

u
V




  and by the 

Neumann adiabatic condition and the variational  theory, we have the related 

Euler-Lagrange equation as follows 

f
u

u
uu 




 )()1(


 . 
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This completes the proof. 

Using the steepest descent method as did in [3], we are able to derive the 

associated heat flow 

for our modified model (4), 

f
u

u
uu

t

u










)()1(


 .                         (2.3) 

3 Implementation details and numerical examples 

In this section, we present some numerical results generated by our modified 

model and the ROF model [3]. Simultaneously, we also compared these results. We 

consider only twodimensional cases and restrict ourself to gray-value images, but the 

model can handle any dimension and can be extended to vector-valued image as well. 

We assume that Ω is square image region and t is the time step. Let us divide Ω into n
2
 

subsquare domains Ωi,j . Then xi,j = (ih, jh) is theendpoint of Ω i,j for 0 ≤ i, j ≤ n, 

where 
2n

h


  (here let h = 1) and the solution is approximated by ui,j at the point xi,j . 

So we have 

  ,
,1

: ,, 




 




jijix u
ji

uuD            ,
1,

: ,, 




 




jijiy u
ji

uuD    

      ,: ,1,, jixjixjixx uDuDuD 

    

      ,: 1,,, 

  jixjixjiyy uDuDuD  

           ,,
2

,,

2

,, 


 

jiyjiyjixjix uDuDmuDuD  

           ,,
2

,,

2

,, 


 

jixjixjiyjiy uDuDmuDuD  

where m[a, b] = )
2

(
signbsigna 

 min(|a|, |b|) and β > 0 is sufficiently near to 0 in 

order to avoid the 
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nonsmoothing term. Thus the details of the algorithm for modified model 1.4 is given 

as follows 

 n

ji

n

ji

n

ji uuu ,,

1

, )1(  



 )(
,

,

,




n

jix

n

jixn

jixx
uD

uD
uDD  

jin

jiy

n

jiyn

jixy f
uD

uD
uDD ,

,

,

, )( 







 . 

In order to measure the quality of the restored images, we introduce the L2 norm 

error and 

signal to noise ratio(SNR) are defined 

dxdyuunormL
2

0

2 )(   and  

)
)(

)(
(log10

2

2

10














dxdy

dxdyff
SNR


, 

Where   



 fdxdyfdxdy

1
,

1
 and 

 dxdy
1

.The lower 

2L norm error 

and the higher the SNR imply that the better the quality of the restoration. All examples 

were programmed in Matlab 7.4 and use the 2.20 GHz Pentium 4 Windows XP system.  

Example 3.1. We first test on the original Lena image shown in Figure 3.1 of size 

256×256. We expose the original image with the additional random Gaussian white 

noise whose mean variance is 20. For the ROF model and the modified ROF model, 

the parameter λ = 31.25, α = 10
−5

, δ  = 10
−4

, the times of iteration is 500 and the time 

step t = 0.2. Before processing, the original image with SNR = 26.0056 is shown in 

Figure 3.1. For the restoration image by the ROF model is shown with SNR = 30.9156 

in Figure 3.1(c). Figure 3.1(d) shows the restoration image generated by our modified 

model and the SNR = 31.4199. In order to better understand the image, we also draw 

the contour map of four related images shown in Figure 3.1(e)-(h). From the contour 

maps, it’s obviously that the ROF model and modified model have good restoration. 

However, comparing with the image shown in Figure 3.1(g), we can find that the image 

recovered by the modified model has least staircase effects than the image generated 

the ROF model shown in Figure 3.1(g). Furthermore, the images shown in Figure 3.1(d) 
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looks more natural, especially the right upper side of the region and center region. 

Simultaneously, we compare the L
2
 norm error of the noise image, the restoration 

image and our restoration image. The L
2
 norm of noise image 

 

Figure 3.1: The related images in Example 3.1. The upper row shows the restored 

images and the lower row shows the contours related to the upper images generated by 

the ROF model is 2.6375×10
7
. The L

2
 norm of the restoration image generated by the 

ROF model and our restoration image are 8.5153 × 10
6
 and 7.5818 × 10

6
, respectively. 

It is easy to find that the later has better image restoration.  

Example 3.2. We test on a MRI image shown in Figure 3.2(a) of size 256 × 256. The 

noise image shown in Figure 3.2(b) is added to the white Gaussian noise with the mean 

variance as 15. So the SNR of noise image is 32.7327 and L
2
 norm error is 1.4716×10

7
. 

We use the same parameters except for the iterative times is 1000. The restoration 

image by the ROF model and our modified model are respectively shown in Figure 

3.2(c) -(d). The SNR of the restored images shown in Figure 3.2(c)-(d) are 34.6243 and 

35.2028. The L
2
 norm of them are 9.5197×10

6
 and 8.3324 × 10

6
, respectively. To really 

visualize different performance of the schemes only a small portion of the images is 

depicted in Figure 3.2(e)-(h). By the above facts, we can obtain the same conclusions 

as restoring the Lena image.  
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4 Conclusion 

In this paper, we propose a modified model for the image denoising problem 

based on the ROF model. The existence and uniqueness of solution and optimization 

condition for the proposed model are proved. Some numerical examples illustrate the 

effectiveness of the modified model. Comparing with the method in [3], our proposed 

model is more natural. In the future, we plan to study some improved algorithms to 

solve our proposed model.  
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