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Abstract

The Hilbert space representations of a class of commutation relations associated with
a Möbius transformation is studied using results on convergence of continued fractions.

1 Introduction

In this paper we study families of Hilbert space operators satisfying commutation relations

AB = B(aI + cA)(bI + dA)−1.

We say that relations of this form are of a continued fraction type, and the algebras defined
by one or several such commutation relations will be called algebras of continued fraction
type.

Families of operators satisfying given commutation relations are called representations
of those commutation relations. In adition to numerous articles on mathematical physics,
we would like to mention the monographs by Jørgensen [5], Putnam [11], Samoilenko [13]
and Shmüdgen [14] where verious aspects of representations of commutation relations are
considered and many useful references can be found. The classification of representations
of commutation relations up to unitary equivalence is a classical problem. One of the most
effective techniques used to solve this problem, is to try to transform the given relations
to certain other relations, with which one can associate some dynamical system acting
on the spectrum of some family of commuting operators. The orbits of the dynamical
system would describe the irreducible families of operators, and the operators of an ar-
bitrary representation would then be constructed as the direct integral of the irreducible
representations (see Mackey [7] and others). The possibility to describe all irreducible
representations just by orbits of the dynamical system depends on the ergodic properties
of the system. The dynamical system should not possess an invariant ergodic non-atomic
measure. The existence of a measure with such properties is an indication that the com-
mutation relations are not of type I, that is there exist representations of the commutation
relations generating a W*-algebra which is a factor of not type I (see Murray, von Neu-
mann [8]). In order to decide the existence or non-existence of such a measure, one has
to understand the behaviour of orbits of the dynamical system. In particular, if there
exists a measurable section, i.e. a Borel set intersecting each orbit in exactly one point,
then there is no such measure. We use the approach outlined above as developed by
Vaisleb, Samoilenko [17].
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From the methodological side we would like to draw attention to the connection be-
tween continued fractions, dynamical systems and algebras with generators satisfying com-
mutation relations. The dynamical systems appearing in this article are generated by a
single Möbius transformation of the complex plain, and are therefore related directly to
continued fractions.

The results in this paper are also related to results on the representations of C∗-
dynamical systems (see e.g. Effros, Hahn [3], Pedersen [10], Tomiyama [16] and references
there). We leave the detailed analysis of this relation to a future publication.

2 Continued fractions

We shall need some basic facts on Möbius transformations

F (z) =
a + cz

b + dz

where the coefficients a, b, c, d are fixed complex numbers satisfying ad− bc 6= 0 and d 6= 0.
The function F is a one-to-one mapping of the extended complex plane C onto itself and
the inverse mapping F−1(z) = −a + bz

c− dz is also a Möbius transformation with the same
restrictions on the coefficients as for F . As a general reference on continued fractions and
Möbius transformations we mention [4], Chapter 3.

We are interested in the behaviour of the iterates of F

F ◦n(z0) = F ◦ ... ◦ F (z0) (composition n times)

for large positive integers n and different initial points z0.
The dynamical behaviour of the iterates has to do with the fixed points of F , i.e.

the points z such that F (z) = z. If (b − c)2 + 4ad = 0 then F has one fixed point
ξ1 = (c − b)/2d, and if (b − c)2 + 4ad 6= 0 then F has two fixed points ξ1 and ξ2 given

by
c− b±

√
(b− c)2 + 4ad

2d (See Case 2 bellow for the particular choice of indexes). To
get a simple picture of the behaviour of the dynamical system F we make a conformal
conjugation of F to a system T by means of a function φ which we describe below. This
means that T = φ◦F ◦φ−1. Then T ◦n = φ◦F ◦n ◦φ−1 and F = φ−1 ◦T ◦φ. We distinguish
between two cases.

Case 1: F has one fixed point ξ1.

Then we define φ by φ(z) = 1/(z − ξ1), i.e. we move the fixed point to infinity.
Then T becomes T (w) = w + l where l = 2d/(b + c) and l is different from zero and
infinity. From this we see that the nth iterate of T , T ◦n(w0), tends to infinity with
n for every initial point w0.

The conclusion is that the iterates F ◦n(z0) converge to the fixed point ξ1 for every
initial point z0.

It may be remarked that in this case F ′(ξ1) = 1, i.e. ξ1 is an indifferent fixed point.

Case 2: F has two fixed points ξ1 and ξ2.

Let us choose the indices for ξ1 and ξ2 so that |c− ξ1d| ≤ |c− ξ2d|. Define φ by

φ(z) =
z − ξ1

z − ξ2
.
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Now the fixed point ξ1 is moved to zero and ξ2 to infinity. Then T becomes T (w) =

qw, where q = c− ξ1d
c− ξ2d

= b + ξ2d
b + ξ1d

. Notice that |q| ≤ 1 and q 6= 1. It can be proved

that |F ′(ξ1)| = |q| ≤ 1 and |F ′(ξ2)| = |q|−1 ≥ 1. In Case 2 we have to distinguish
between two cases.

Case 2.1: |q| < 1.

Then ξ1 is an attractive and ξ2 is a repulsive fixed point. Since T ◦n(w0) = qnw0

tends to 0 for every finite initial point w0, we conclude that the iterates F ◦n(z0) tend
to ξ1 for every initial point z0 6= ξ2.

Case 2.2: |q| = 1, q 6= 1.

If w0 is different from zero and infinity, then the points T ◦n(w0) = qnw0 never con-
verge. Instead they move around the circle with centre at the origin and radius
|w0|. In fact, each iteration means multiplication by q, and since |q| = 1 this gives
a rotation by the angle arg(q). The interpretation for the dynamical system F is as
follows. If the initial point z0 is different from ξ1 and ξ2 then the iterates F ◦n(z0)
do not converge. Instead they move around the circle

C(z0) :
∣∣∣∣z − ξ1

z − ξ2

∣∣∣∣ =
∣∣∣∣z0 − ξ1

z0 − ξ2

∣∣∣∣
as described above by the dynamics of the conjugate system T = φ ◦ F ◦ φ−1. The set
C(z0) is one of the conjugate circles to the fixed points ξ1 and ξ2.

Motivated by the investigation above we say that F is of convergence type in Case 1
and Case 2.1 and of divergence type in Case 2.2. This means that the iterates F ◦n always
converge if F is of convergence type and that they move around on circles in the divergence
case. It is easy to see that F−1 is of convergence type if and only if F is of convergence
type.

Example 1 If c = 0 and d = 1, then a 6= 0. In this case F is of divergence type if and
only if ξ1 6= ξ2 and 1 = |q| = |ξ1/ξ2|, i.e. |ξ1| = |ξ2|. When a and b are real, c = 0 and
d = 1, then F is of convergence type if and only if b 6= 0 and b2 + 4a ≥ 0.

The following proposition clarifies the situation with periodic points of the Möbius
transformation F .

Proposition 1 The mapping F has periodic points different from the fixed points if and
only if F is of divergence type and the number q introduced in Case 2 is an nth root of
unity for some positive integer n. Then all points different from the fixed points have the
same period.

We say that a Möbius transformation F is of periodic divergence type if it is of diver-
gence type and the number q introduced above is an nth root of unity for some positive
integer n.

When F is of divergence type and has no periodic points (except the fixed points),
there exists an invariant measure satisfying an ergodic property in the following sense.
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Proposition 2([15]) Assume that F is of divergence type and that the number q in Case
2.2 is not an nth root of unity for any positive integer n. Let z0 be an arbitrary complex
number different from the fixed points of F , and C(z0) the circle introduced in Case 2.2.
Then there exists a probability measure µz0 without point masses, with support C(z0) and
such that for all Borel sets E in C

µz0(E) = µz0(F
−1(E)) (invariance property)

and

F (E) = E implies that µz0(E) is either 0 or 1 (ergodic property).

An orbit of F is a set {F ◦n(z0) : n ∈ Z} where z0 ∈ C. If n is negative F ◦n denotes n
iterations of the inverse function F−1. It is an important question for the understanding
of the ergodic properties of F whether there exists a Borel set in C such that any orbit of
F meets this set in exactly one point. Such a set is called a measurable section of F . The
answer is provided by the following theorem.

Theorem 1 The Möbius transformation F has a measurable section if it is of convergence
type. If F is of divergence type it has a measurable section if and only if the number
q = (c − ξ1d)/(c − ξ2d) introduced in Case 2 is an nth root of unity for some positive
integer n.

Proof. We first treat the convergence case. It is easy to find a measurable section for
the conjugate system T . Let us first check Case 2.1. Then T (w) = qw where |q| < 1.
The fixed points of T are 0 and ∞. A measurable section for T is, for instance, the union
of the fixed points of T and the set {w : |q| < |w| ≤ 1}. This means that a measurable
section for F is the union of the fixed points for F and the set

{
z ∈ C : |q| <

∣∣∣∣z − ξ1

z − ξ2

∣∣∣∣ ≤ 1
}

.

In Case 1 a measurable section of the conjugate system T (w) = w + l, l = 2d/(b + c), is
for instance the union of ∞ (the only fixed point of T for d 6= 0) and an infinite strip of
width |l| bounded by two lines perpendicular to the vector l. The first line passes through
0 and il, and is included in the strip. The second line is excluded from the strip, and is
obtained by adding l to the first line, i.e. it passes through the points l and (i + 1)l.

Let us now treat the divergence case. If q is an nth root of unity, and n is the
smallest of such integers, then all points except the fixed points have period n, and a
measurable section for T (w) = qw is, for instance, the union of {0,∞} and the angular
sector

{
w ∈ C : 0 ≤ arg(w) < 2π

n

}
. The corresponding measurable section for F is the

union of the fixed points of F and the set
{
z ∈ C : 0 ≤ arg

(
z − ξ1
z − ξ2

)
< 2π

n

}
. When q is not

a root of unity, Proposition 2 implies that there does not exist any measurable section.
Indeed, if such a measurable section would exist, then any measure, satisfying both the
invariance property and the ergodic property, would have to be concentrated on one orbit
of the dynamical system which contradicts Proposition 2. 2



206 S. SILVESTROV and H. WALLIN

3 Classification of representations

3.1. In this section we consider the problem of classification up to unitary equivalence
of pairs (A,B) of Hilbert space operators consisting of a self-adjoint operator A and a
unitary operator B satisfying the relation

AB = aB(bI + A)−1 (1)

where the parameters a and b are real numbers and a 6= 0. The point spectrum σp(A) of A
is assumed not to contain −b. This in particular implies that EA({−b}) = 0, where EA(·)
denotes the resolution of the identity of A. Henceforth, Hλ denotes the eigensubspace of
the operator A associated with an eigenvalue λ. We will also use the notation Fa,b,c,d(z) =
a + cz
b + dz and Fa,b(z) = Fa,b,0,1(z) = a

b + z .
Since we do not assume the operator A to be bounded we must specify what is meant

by relation (1) for an unbounded A.
We will accept the following definition (see [17]).

Definition 1 The self-adjoint operator A and the unitary operator B in the Hilbert space
H are said to be a representation of the relation (1) if

EA(δ)B = BEA(F−1
a,b (δ)) (2)

for any Borel set δ of R1.

The following theorem shows that if A is bounded and −b 6∈ σ(A), then this definition
and the ordinary one are equivalent.

Theorem 2 ([17]) For a bounded self-adjoint operator A with −b 6∈ σ(A) and a unitary
operator B the following three properties are equivalent:

(i) The operators A and B satisfy relation (1) in the sense of Definition 1.

(ii) AB = aB(bI + A)−1 pointwise on H.

(iii) For any bounded Borel function φ(·) : R1 7→ R1

φ(A)B = Bφ(a · (bI + A)−1).

We now turn our attention to the spectrum σ(A) of A. The next lemma connects
properties of the spectrum of A with properties of the mapping Fa,b.

Lemma 1 (i) If λ ∈ σ(A) \ {−b}, then Fa,b(λ) ∈ σ(A) \ {0}.
(ii) If µ ∈ σ(A) \ {0}, then F−1

a,b (µ) ∈ σ(A) \ {−b}.

Proof. With each self-adjoint operator A in a Hilbert space one can associate its resolution
of the identity EA(·). It is well known that a point µ belongs to the spectrum of A if and
only if EA(δ) 6= 0 for any interval δ containing µ [12]. Let λ ∈ σ(A)\{−b}. To prove (i) it
is enough to show that EA(δ) 6= 0 for any interval δ such that Fa,b(λ) ∈ δ and 0 6∈ δ. Since
F−1

a,b (δ) is an interval containing λ and since λ ∈ σ(A) \ {−b}, we get EA(F−1
a,b (δ)) 6= 0.

This inequality and the relation (2) imply EA(δ) = BEA(F−1
a,b (δ))B∗ 6= 0.

Now let µ ∈ σ(A) \ {0}. To prove (ii) it is enough to show that EA(θ) 6= 0 for any
interval θ such that F−1

a,b (µ) ∈ θ and −b 6∈ θ. Since Fa,b(θ) is an interval containing µ and
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since µ ∈ σ(A) \ {0}, we get EA(Fa,b(θ)) 6= 0. This inequality and the relation (2) imply
EA(θ) = B∗EA(Fa,b(θ))B 6= 0. 2

For an initial point λ0, the sets Orba,b(λ0) = {λn : Fa,b(λn) = λn+1, n = · · · ,−1, 0, 1, · · ·},
Orb+

a,b(λ0) = {λn : Fa,b(λn) = λn+1, n = 0, 1, · · ·} and Orb−a,b(λ0) = {λn : Fa,b(λn) =
λn+1, n = · · · ,−2,−1} are called respectively an orbit, a forward orbit and a backward
orbit of Fa,b passing through λ0. Clearly Orba,b(λ) = Orb+

a,b(λ)
⋃

Orb−a,b(λ).

Remark 1 From the relation (2) it follows that none of the points from Orb+
a,b(0)

⋃
Orb−a,b(−b) can belong to the point spectrum of the operator A in a representation of rela-
tion (1). The situation changes if, for example, we allow B to be an isometry.

Let us define the irreducible representations of the relation (1).

Definition 2 The representation (A,B) of the relation (1) is called irreducible if any
bounded linear operator commuting with the operators A and B is a multiple of the identity.

Let Fa,b be of convergence or periodic divergence type. As was described in Section 2

this takes place if and only if b2 + 4a ≥ 0 or q = −b +
√

b2 + 4a
−b−

√
b2 + 4a

= exp (i2πα) for some

rational α. Theorem 1 shows that, in these cases, Fa,b does possess a measurable section
M .

The following proposition is the key to the description of the irreducible representations
both in the convergence and the periodic divergence case.

Proposition 3([15]) Let Fa,b be of convergence type or of periodic divergence type. Then,
in an irreducible representation (A,B) of the relation (1), the spectrum of the opera-
tor A is simple and based on some orbit of the Möbius transformation Fa,b, that is
EA(OrbFa,b

(λ)) = I for some λ. If eλ is an eigenvector of the operator A correspond-
ing to an eigenvalue λ, then Beλ is an eigenvector of the operator A corresponding to an
eigenvalue a/(b + λ).

We are ready now to give a unitary classification of the irreducible representations of
the relation (1).

3.2. We will start with a description of the representations of (1) in the convergence case.
In what follows we put MR = M ∩R1. If M is a measurable section for F on the complex
plane, then MR is a measurable section for F on the real line.

Theorem 3 Assume that a, b ∈ R1 are such that Fa,b(x) = a
b + x, x ∈ R1, is a Möbius

transformation of convergence type. Let M be a measurable section for Fa,b (see Th.1) and
ξ1 and ξ2 be the fixed points of Fa,b. Then all irreducible representations of the relation (1)
are either one-dimensional (dim(H) = 1) or bounded infinite-dimensional (dim(H) = ∞)
and classified as follows.

(i) (dim(H) = 1). Each point (ξk, φ) ∈ {ξ1, ξ2} × [0, 2π), k = 1, 2, parametrizes the
unique irreducible representation. The operator A is multiplication by ξk and B is multi-
plication by exp(iφ) in the space H ∼= C. The representations corresponding to different
points in {ξ1, ξ2} × [0, 2π) are unitarily inequivalent.

(ii) (dim(H) = ∞). Each λ ∈ MR \ {ξ1, ξ2} parametrizes the unique irreducible repre-
sentation. It is infinite-dimensional, bounded and defined by the formulas

Aej = F ◦j
a,b(λ)ej , Bej = ej+1, j ∈ Z
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where {ej}j∈Z is an orthonormal basis consisting of eigenvectors of the operator A and
F ◦j

a,b(λ) = a
b +

a
b + . . . +

a
(b + λ) is the value of the approximant of order j at the point λ for

the continued fraction a
b +

a
b + . . . +

a
b + . . . . The representations corresponding to different λ

are unitarily inequivalent.
Any irreducible representation of the relation (1) is unitarily equivalent to one of the

representations defined in (i) and (ii).

Proof. First of all, by Proposition 1 the mapping Fa,b has no periodic points except
the fixed points ξ1 and ξ2. Next, from Proposition 3 we have either σ(A) = {ξ1} or
σ(A) = {ξ2} or σ(A) = OrbFa,b

(λ) for some λ ∈ MR \ {ξ1, ξ2}. The last possibility means
that the spectrum σ(A) is a union of the orbit OrbFa,b

(λ) and the limit points of OrbFa,b
(λ)

which in the convergence case are exactly the fixed points of Fa,b. The eigensubspaces Hλ

of A are one-dimensional (see Prop. 3). If σ(A) = {ξ1} or σ(A) = {ξ2}, then we get
(i). It remains to show that if σ(A) = OrbFa,b

(λ) for some λ ∈ MR \ {ξ1, ξ2}, then the
representation is unitarily equivalent to that in (ii). To see this take the unit vector
eλ ∈ Hλ and form the orthonormal basis ej = Bjeλ, j ∈ Z, of H consisting of eigenvectors
of the operator A. Then in this basis the operators A and B are defined as in (ii). 2

The next theorem is a kind of spectral theorem in which an arbitrary representation
of the relation (1) is described as being unitarily equivalent to a direct sum or integral of
the irreducible representations. The proof can be adapted from the proof of the similar
theorem in [17] (see [15]).

Theorem 4 Assume that a, b ∈ R1 are such that Fa,b(x) = a
b + x, x ∈ R1, is a Möbius

transformation of convergence type. Let M be a measurable section for Fa,b (see Th.1) and
ξ1 and ξ2 be the fixed points of Fa,b.

Let (A,B) be a representation of the relation (1) in a Hilbert space H (see Def. 1).
Then H = H(1) ⊕

H(∞), where H(1) and H(∞) are orthogonal subspaces of H, invariant
with respect to A and B. The subspace H(∞) may be represented as H(∞) = l2(Z)

⊗
H(∞),

where H(∞) is some subspace of H. The pair (A,B) of operators is unitarily equivalent to

A =
∫

{ξ1,ξ2}×[0,2π)

λ dE1(λ, φ) +
∫

MR\{ξ1,ξ2}



. . . . . . . . . . . . . . .

. . . a
λ
− b 0

. . . . . .
. . . 0 λ 0

. . .
. . . . . . 0 a

b + λ
. . .

. . . . . . . . . . . . . . .


⊗

dE∞(λ),

B =
∫

{ξ1,ξ2}×[0,2π)

exp(iφ) dE1(λ, φ) +



. . . . . . . . . . . . . . .

. . . 0 0 0
. . .

. . . 1 0 0
. . .

. . . 0 1 0
. . .

. . . . . . . . . . . . . . .


⊗

IH(∞)

where E1(·, ·) is some resolution of the identity (probability projection valued measure)
defined on Borel subsets of {ξ1, ξ2}× [0, 2π), taking values in projections onto subspaces of
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H(1), and E∞(·) is some resolution of the identity defined on Borel subsets of MR\{ξ1, ξ2},
taking values in projections onto subspaces of H(∞).

It is possible to reformulate the above theorem in multiplication operator form. This
also would give a complete set of unitary invariants in terms of the spectral classes of
measures and function of multiplicity.

3.3. So far we have delt with the convergence case. Let us describe what happens if
Fa,b(x) = a

b + x is of periodic divergence type (see Sec. 2).
In the periodic divergence case, the Möbius transformation again posseses a measurable

section (see Th.1). So both the theorem describing irreducible pairs and the structure
theorem may be proved by arguments similar to those used in Theorems 3 and 4.

Hence, we will just formulate the theorems and omit the proofs.
In the periodic divergence case all irreducible representations of (1) are finite-dimen-

sional and described, up to unitary equivalence, in the following theorem.

Theorem 5 Assume that a, b ∈ R1 are such that Fa,b(x) = a
b + x, x ∈ R1, is a Möbius

transformation of periodic divergence type. Let MR be a measurable section for Fa,b on
the real line, ξ1 and ξ2 be the fixed points of Fa,b, the number ξ1/ξ2 be an nth root of unity
for some integer n > 1 and n be the smallest of such integers.

(i) If n ≥ 3, then all irreducible representations of the relation (1) are n-dimensional
(dim(H) = n). Each (λ, φ) ∈ MR × [0, 2π) parametrizes, up to unitary equivalence, a
unique irreducible representation, defined by the formulas

Aej = (
a

b +

a

b + . . . +

a

b + λ︸ ︷︷ ︸
approximant of order j

)ej , 0 ≤ j ≤ n− 1

Bej =

{
ej+1 if 0 ≤ j ≤ n− 2
exp (iφ)e0 if j = n− 1

where {e0, . . . , en−1} is an orthonormal basis consisting of eigenvectors of the operator A.

(ii) If n = 2, then ξ2 = −ξ1, b = 0, Fa,b(x) = a/x. If a > 0 then {ξ1, ξ2} ⊂ R1, and
if a < 0 then {ξ1, ξ2} ⊂ iR1.

If {ξ1, ξ2} ⊂ iR1, then all irreducible representations are two-dimensional and de-
scribed in (i) with n = 2.

If {ξ1, ξ2} ⊂ R1, then all irreducible representations are either two-dimensional or
one-dimensional. All two-dimensional representations are as described in (i) with n = 2
except that now they are parametrized by the points (λ, φ) ∈ (MR \ {ξ1, ξ2}) × [0, 2π).
The one-dimensional representations are parametrized, up to unitary equivalence, by the
points (ξk, φ) ∈ {ξ1, ξ2}× [0, 2π), k = 1, 2. The operator A is multiplication by ξk and B is
multiplication by exp(iφ) in the space H ∼= C.

The spectral theorem in the periodic divergence case can be formulated as follows.

Theorem 6 Assume that a, b ∈ R1 are such that Fa,b(x) = a
b + x, x ∈ R1, is a Möbius

transformation of periodic divergence type. Let MR be a measurable section for Fa,b on
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the real line, ξ1 and ξ2 be the fixed points of Fa,b, the number ξ1/ξ2 be an nth root of unity
for some integer n > 1 and n be the smallest of such integers.

Let (A,B) be a representation of the relation (1) in a Hilbert space H
(i) If n ≥ 3 or n = 2 and {ξ1, ξ2} ⊂ iR1, then there is a subspace H(n) of H such

that H = Cn ⊗
H(n), and the pair of operators (A,B) is unitarily equivalent to

A =
∫

MR\{ξ1,ξ2}×[0,2π)



λ 0
. . . 0

0 a
b + λ

. . . . . .
. . . . . . . . . 0

0
. . . 0

a

b +
a

b+...
+ a
b + λ︸ ︷︷ ︸

n−1



⊗
dEn(λ, φ)

B =
∫

MR\{ξ1,ξ2}×[0,2π)


0 0

. . . exp (iφ)

1 0
. . . . . .

. . . . . . . . . 0

0
. . . 1 0


︸ ︷︷ ︸

n×n matrix

⊗
dEn(λ, φ)

where En(·, ·) is some resolution of the identity defined on Borel subsets of (MR\{ξ1, ξ2})×
[0, 2π), taking values in projections onto subspaces of H(n).

(ii) If n = 2 and {ξ1, ξ2} ⊂ R1, then there exist orthogonal subspaces H(1), H(2)

and H(2) such that H = H(1) ⊕
H(2), H(2) = C2 ⊗

H(2) and the pair (A,B) is unitarily
equivalent to

A =
∫

{ξ1,ξ2}×[0,2π)

λ dE1(λ, φ) +
∫

MR\{ξ1,ξ2}×[0,2π)

(
λ 0
0 a

λ

) ⊗
dE2(λ, φ)

B =
∫

{ξ1,ξ2}×[0,2π)

exp (iφ) dE1(λ, φ) +
∫

MR\{ξ1,ξ2}×[0,2π)

(
0 exp (iφ)
1 0

)⊗
dE2(λ, φ)

where E1(·, ·) is some resolution of the identity defined on Borel subsets of {ξ1, ξ2}×[0, 2π),
taking values in projections onto subspaces of H(1), and E2(·, ·) is some resolution of the
identity defined on Borel subsets of (MR \ {ξ1, ξ2}) × [0, 2π), taking values in projections
onto subspaces of H(2).

4 Some applications, problems and remarks

4.1. Using the convergence properties of the Möbius transformations on C described in
Section 2, all results from Section 3 can be extended to describe the representations (A,B)
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of the commutation relation (1) in which A is a normal operator, B is unitary, and the
parameters a and b are in general complex numbers. We refer to [15] for details.

4.2. The problem of classification of representations of the more general commutation
relations

AB = B(aI + cA)(bI + dA)−1 (3)

or of the relations
A1A2 = A2A1

A1B = B Re((aI + c(A1 + iA2))(bI + d(A1 + iA2))−1

A2B = B Im((aI + c(A1 + iA2))(bI + d(A1 + iA2))−1
(4)

can be solved analogously to the case when c = 0, d = 1. All proofs and results are essen-
tially the same except that the formulas become dependent on four parameters a, b, c, d.

In particular, the commutation relations are of type I exactly when either
∣∣∣∣c− ξ1d
c− ξ2d

∣∣∣∣ 6= 1

or c− ξ1d
c− ξ2d

is a root of unity. Here ξ1, ξ2 are the fixed points of the Möbius transformation

Fa,b,c,d(z) = a + cz
b + dz . To get the formulas for representations in this case, one should simply

replace everywhere a
b + z by a + cz

b + dz .

4.3. Theorems 3, 4, 5 and 6 were obtained under the assumption that the corresponding
continued fraction is of convergence or periodic divergence type. In particular, the con-
clusion can be drawn that in this case the commutation relations of continued fraction
type are of type I. The situation changes dramatically in the non-periodic divergence case.
The main difficulty is that in the non-periodic divergence case, as described in Section 2,
there exists a non-atomic measure which is invariant and ergodic with respect to the corre-
sponding Möbius transformation. Such a measure can not be based on a single orbit. The
existence of such a measure makes possible the construction of a factor-representation
of the relation (3) which is not of type I (see [8]). This means that the corresponding
commutation relations are not of type I.

4.4. The problem of classification of the representations, by selfadjoint operators, of
polynomial commutation relations of the third degree, linear with respect to one of the
variables, was considered in [9], [2].

Direct application of our results gives a solution to the problem of classification of
pairs (A,B) consisting of a self-adjoint operator A and a unitary operator B satisfying a
third degree commutation relation of the form a1ABA + a2AB + a3BA + a4B = 0. To see
this simply multiply (3) by bI + dA from the right and then rename the coefficients.

4.5. The algebra of polynomials on the closed quantum unit disc is one of the many
examples appearing in both mathematical and physical literature. It can be defined as
a ∗-algebra generated by two elements z and z∗ satisfying the following commutation
relation:

zz∗ − z∗z = µ(I − zz∗)(I − z∗z) (0 < µ < 1). (5)

In Section 3 of [6] the irreducible representations of (5) have been classified up to unitary
equivalence.
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Let us consider (5) in the light of the commutation relations of continued fraction type.
Let z = CU be the left polar decomposition of z, where C is positive operator, and U is
a partial isometry. Then the relation (5) can be rewritten as

CU = U((1 + µ)C − µI)(µC + (1− µ)I)−1. (6)

Note that this is exactly a commutation relation of continued fraction type corresponding

to the Möbius transformation Fa,b,c,d(z) = −µ + (1 + µ)z
(1− µ) + µz

with parameters a = −µ, b =

1− µ, c = 1 + µ, d = µ. It is easy to check that this Möbius transformation has only one
fixed point ξ = ξ1 = ξ2 = 1 for any µ 6= 0. Hence, it is of convergence type as described in
Case 1 in Section 2. Therefore, the commutation relation (5) is of Type I for any µ 6= 0
(see Subsec. 4.3).

Theorem 3 and Subsection 4.2 provide us with unitary classification of all irreducible
representations of (6), with not-necessarily positive self-adjoint C, but with unitary U . In
particular, all of them are either one-dimensional or infinite-dimensional and the resolution
of the identity of C is based on an orbit of Fa,b,c,d. All representations are described as
direct integrals of the irreducible representations as in Theorem 4.

For 0 < µ < 1 any infinite orbit of Fa,b,c,d consists of both positive and negative
numbers. This implies that C can be positive in the irreducible representation of (6) if
and only if this representation is one-dimensional (H = C). Therefore, all irreducible
representations of (6) with positive C are one-dimensional and unitarily equivalent to one
of the representations of the form Cf = f, Uf = exp(iφ)f, f ∈ C, φ ∈ [0, 2π).

The operator U in the polar decomposition of z does not have to be unitary. In general,
it may be just a partial isometry. However, one can prove, using the relation (5), that in
the irreducible representation of (6), the operator U must be an isometry. This is exactly
the case for the infinite-dimensional irreducible representation of (5) described in [6].

4.6. Finally, we would like to mention that it is an interesting problem to describe, up to
unitary equivalence, families of operators {Aj}, B, consisting of finitely or infinitely many
mutually commuting self-adjoint operators Aj and one unitary operator (partial isometry)
B, satisfying several commutation relations of continued fraction type

AjB = ajB(bjI + Aj)−1 for all j.

In particular, one would have to answer the question: for which parameters ai and bi are
these commutation relations of type I?
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