
Per formance Measurement and Bottleneck 
Analysis for  Streaming Media Servers 

Yan He1, Haocheng Huang2 and Jinyao Yan3

Traditionally, the quality of service for streaming media systems depends on the 
network bandwidth, network delay, efficiency of media coding compression and 

  

Abstract. With the rapid development of Internet and the popularity of media 
contents, the performance of stream media server is becoming an important factor 
for stream-media systems. By measuring and analyzing the performance con-
straints of the media server, we find the way to improve the performance of stream 
media server, and then improve media service. In this paper, we discuss the per-
formance metrics and constraints of stream media server based on the analysis of 
media streaming system and service. To evaluate the performance of stream media 
servers, we change the following conditions as the performance metric: the num-
ber of connections, the number of concurrent active media files, the format of the 
media and the bit-rate of the stream. We measure the CPU idle time, IO wait, 
memory usage, network bandwidth as metrics to find the bottleneck and con-
straints for streaming server. By increase the capacity of identified bottleneck, we 
may further improve the performance of steam media servers. 

Keywords: Streaming media servers·Performance measurement· Bottleneck 

1 Introduction 

                                                           
1 Yan He () 
School of Information and Engineering, Communication University of China 
e-mail: hey4tc@gmail.com 
 
2 Haocheng Huang 
Computer and Network Center, Communication University of China 
e-mail: mickypc@cuc.edu.cn 
 
3 Jinyao Yan 
Computer and Network Center, Communication University of China 
e-mail: jyan@cuc.edu.cn 

3rd International Conference on Multimedia Technology（ICMT 2013)

© 2013. The authors - Published by Atlantis Press 1211

mailto:hey4tc@gmail.com�
mailto:mickypc@cuc.edu.cn�
mailto:jyan@cuc.edu.cn�


  

decoding in client-side, and so on. In the past, the network transmission capacity is 
one of the key factors to constrain the development of streaming media. With the 
development of broadband network, the quality of service for streaming systems is 
more constrained by the performance of streaming servers. In addition, streaming 
media application have been paid more attention and became one of the main ap-
plications of high-speed networks. Typical streaming media applications include 
VOD, video conference, remote education, digital library and so on. 

With the increase in bandwidth and the use of load balancing and CDN, the 
performance of streaming media server has become an important factor restricting 
streaming media application. Finding out the bottleneck of media server is one of 
the prerequisites of further optimizing streaming systems and it is also the theoret-
ical basis to evaluate the performance of streaming media servers. To date, the re-
search knows little about how to find out the bottleneck of the media server and to 
estimate the performance [2, 3, 4, 5]. Therefore, we, in the paper, evaluate the per-
formance of streaming servers and attempt to find out an experimental method to 
analyze the bottleneck of streaming servers. 

The rest of the paper is organized as follows. In Section 2, we introduce the 
model of media service and performance metric of media server. In Section 3, we 
describe the experiment settings and the methodology. In Section 4, we analyse 
the result of the experiment. In Section 5, we conclude this paper. 

2 The model of media servi ce and per formance metr ic 

Streaming media server is the basic functional unit to provide service to users. Its 
performance directly affects the service ability of streaming media system. In the 
measurement of streaming media server, the most important indicators are 
throughput capacity of media and the concurrent request quantity. Let's introduce 
the process of streaming media server: 

1. When a request arrives, the media server reads the media contents from the 
hard disk and stores them in memory; 

2. Before media files are send to the network, they should be processed by CPU 
as copying, segmentation, being packed based on the protocol; 

3. The contents are packetized in memory, and then sent to the NIC; 
4. The contents are sent to the network. 

 
Through the above process, there are four key factors affecting the performance 

of streaming media server: CPU, memory, disk reading ability and the network 
throughput rate. 

1212



  

Therefore, we observe CPU utilization, I/O wait, memory free size, reading and 
writing bit rate of disk and network flow rate in our test to get the server bottle-
neck. 

3 Exper iment settings and the methodology 

3.1 Experiment settings 

As shown in table 1, we use Linux redhat enterprise 5 as our operating system; 
Live555 and lighttpd  to provide the RTSP [1] and http service respectively; Systat  
to collect  performance data ,i.e. CPU, hard disk, memory data. Furthermore we 
use oprofile  to dig out the reason for the performance issue. 

 
Table 1: Software Configuration 

Item Description 
OS Linux redhat Enterprise 5 

File System ext3/tmpfs 
Media Server Live555/ lighttpd 

Imitation Client openRTSP/wget/VLC 
Performance collection tools Systat 

Server analysis tool oprofile 
 

Streaming server hardware are shown in Table 2: 
 

 Table 2:  Hardware Configuration  
Item Description 
CPU Intel(R)Xeon(R)CPU  X5460@3.16GHz 
Disk Sata 7200rpm/FC 

Memory 2G 
Network Card 1000mbps/100mbps 

3.2 Experiment methodology 

On the server, we run the media server program and start a Perl script to call Syss-
tat tools to collect server performance data. On the other hand, in the client we use 
the openRTSP to simulate connecting to server with different concurrent connec-

1213



  

tions, flow rate, the number of access files and so on. At last, we can get the col-
lected performance statistics data on server. For analyzing the bottleneck of serv-
er, we export the data exported to excel to make a chart for observation. 

3.3 The choice of sampling interval 

As the minimum sampling interval of Sysstat is one second, we choose the sam-
pling interval based on the following principle: 

1. Sampling interval should be as small as possible, so that the data obtained will 
be more accurate and conducive for our bottleneck analysis; 

2. The impact on the server performance by running the tool should be as small as 
possible which should not affect the results of the experiment. 

Therefore, we run the sampling tool without running the media server program, 
and observe the performance of the server from which to select the most appropri-
ate sampling interval. The sampling both in the intervals of 1s and 5s consume 
almost the similar CPU resource, while 1 second is the minimum interval. There-
fore we select 1 second as the sampling interval. 

4 Per formance analysis 

In this section, we present the experiment results of two representative cases and 
our analysis to find the bottleneck of streaming server. In the results, idle means 
the percentage of the time interval when the CPU was idle; iowait is time that the 
processor/processors are waiting (i.e. is in an idle state and does nothing), during 
which there in fact was outstanding disk I/O requests. 

4.1 Experiment case 1 

Experimental conditions are as follows. The number of concurrent request is 30; 
the flow rate is 5 MB/s, the media format is MPEG2, and we change the number 
of accessing media files from one to thirty by ten. 

We only show the result which the number of accessing media files are 1 in 
Figure  1 and 30 in Figure 2. 

1214



  

 
Fig 1: The CPU idle (left) and the IOwait (right) when the access file quantity is 1 

 
Fig 2: The CPU idle (left) and the IOwait (right) when the access file quantity is 30 

We make the following observation from Figure 1 and Fig 2. When the client 
has not connected the server yet, idle and IO wait almost are 100 and 0 respective-
ly. When the client starts visiting, I/O wait increases quickly and therewith CPU 
idle reduce. When the I/O operation declines, CPU idle recovers very slowly. 
When the visits complete, the CPU idle and IO wait restore to the level before vi-
siting. 

Figure 1 and 2 also show that the load of CPU is different in different stages of 
the streaming service. In the initial stage of connections, in addition to the file rep-
lication, segmentation and protocol packaging, there will be interactive process 
need to establish connections which lead to more resource-intensive than the 
smooth connection stage. 

To compare the results, it is observed that, with the increase in the quantity of 
access files, IO wait value increases gradually. When the quantity is 30, IO wait 
reached 80%, a large proportion of occupied CPU. CPU is not fully used for 
processing, as the most of the time is waiting for I/O reading and writing. As the 
CPU does not reach bottleneck, and I/O ability become the server performance 
bottlenecks. 

With the number of access files rising, the remaining amount of memory de-
creases. How the remaining memory is finally stable at 50,000KB, which is not 
shown in the figures. As Memory is not exhausted, it is not a bottleneck. We con-
sider the I/O performance as an important bottleneck. 

To further verify that the bottleneck is the I/O read-write operation, the pro-
gram will be ported to 64-bit system, which can handle more memory space. We 

1215



  

compare server performance between ext3 and tmpfs: ext3 is build on sata while 
tmpfs use RAM or swap for storage. In order to ensure tmpfs using the real memo-
ry, we specially use "swapoff -a" to close off swap partition. First we use dd pro-
gram to test, we can conclude that the I/O performance of the tmpfs is ten times 
better than ext3. Then, we make the test of 30 access files again and find out the 
I/O bottleneck is almost eliminated in tmpfs. 

 

 
Fig 3: the cpu idle (left) and the iowait (right) running respectively on ext3 

 

 
Fig 4: the cpu idle (left) and the iowait (right) running respectively on tmpfs 

 
Figure 3 shows the server performance in Sata hard disk which is similar when 

running on 32-bit system. When the number of access files reaches 30. IO wait 
maintained at about 80%, idle remains 0. We conclude the I/O read-write opera-
tion is the bottleneck. 

Figure 4 shows the result of server running in tmpfs. Due to the use of RAM 
memory, IO wait almost 0, that only appears a peak in the 85s. As CPU idle is 
about 70%, server performance is significantly improved. Therefore, disk I/O ca-
pacity is the main bottleneck of the server performance in this case. 

4.2 Experiment case 2 

We list the experimental conditions below: the number of access file is one; the 
flow rate is 5 MB/s, the media format is MPEG2, and we change the concurrent 
request number from one to thirty. 

1216



  

 
Fig 5: The CPU utilization (left) and the IO wait (right) when the connection quantity is 10 

 

 
Fig 6: The CPU utilization (left) and the IO wait (right) when the connection quantity is 30 
 
As it can be seen from Figure 5 and 6, when the concurrent requests gradually 

increase, the utilization of server's CPU raise. When concurrent requests increase 
to 30, CPU utilization reaches about 80%, CPU becomes the server bottleneck. In 
Figure 6, the number of access file is just one,  IO Wait is almost zero, so the CPU 
is not waiting for the disk I/O request. 

To find out what the CPU is working at, we use oprofile to collect the informa-
tion of CPU usage. We show results in Figure 7: 

 

 
Fig 7: The result of Oprofile 

1217



  

As it can be seen, most CPU time resources is consumed in 
MPEG1or2VideoStreamParser :: parseSlice (). This function is mainly used for 
the slice parsing. We can conclude that when disk I/O request is not the bottle-
neck, CPU capacity is the main bottleneck and CPU is mainly used for media data 
analysis and packaging in this case. 

To prove our conclusion, we make experiments in tmpfs to eliminate the bottle-
neck of disk I/O requests. We gradually increase the concurrent connections and 
the number of access file simultaneously to 50. 

 

 
Fig 8: CPU utilization under the original CPU capacity (left) and 8 times of it (right) when the 

numbers of concurrent connections and of accessed files are both 50 
 
When both the concurrent connections and the quantity of access file are 50, 

CPU usage change to 100%, and the quality of video observed by VLC player is 
not smooth. We consider that the server reaches its bottleneck. Then we increase 
the CPU capacity by 8 times, CPU utilization percent is only 20% and the viewing 
quality has improved significantly. Thus, we prove the conjecture. 

In addition to the above experiments, we also did other experiments and further 
make the following conclusions: 

1. When the concurrent connection is 20, along with the increase of flow rate (2 
MBPS, 5 MBPS, 10 MBPS), the throughput increase linearly, and server 
processes more and more data. When the flow rate reach 10 Mbps, CPU idle is 
always 0 and becomes the bottleneck of the server. 

2. Consumption of CPU is relatively lower and server performance is better when 
playing H.264 files than MPEG 2 files: CPU resources remain 80% available 
when playing H.264 file while MPEG 2 remain about 60%, both with 20 con-
current connections, 5MBPS flow rate, and 1 access file. 

3. We make experiments to find out the difference between HTTP and RTSP. We 
use lighttpd as HTTP server. Compared with the RTSP, HTTP consumes less 
CPU resources. CPU Idle remain about 90% by HTTP while CPU run ex-
hausted by RTSP in the same condition. According to experiment case 2, RTSP 
server needs to use CPU for data analysis and packaging beside transmission 
while HTTP mainly focus on transmission, so the performance of HTTP is bet-
ter. 

1218



  

5 Summary 

To find out the real bottlenecks of streaming media server, we changed the capaci-
ty of disk IO, CPU, flow rate and the bandwidth respectively. Experiment results 
and conclusions are summarized as follows: 

1. When the connection is in the establishing state, CPU handles the establishing 
process and reads the media data into memory, and then analyses and packetiz-
es the media data; 

2. Disk I/O read-write capacity is the main bottleneck of streaming media server 
in many cases; 

3. After improving the capacity of reading and writing, CPU processing capacity 
become the bottleneck; 

4. When the bandwidth is limited, the quantity of concurrent connections is li-
mited; 

5. Efficient media coding method improves performance of streaming media 
server; 

6. HTTP is simpler and faster than RTSP. 

6 Acknowledgements 

This work was supported partly by NSFC (National Natural Science Foundation 
of China) under grant No. 60970127 and the Program for New Century Excellent 
Talents in University (NCET-09-0709). 

7 References 

1 H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. "RTP: a transport protocol for real-
time applications". RFC 1889, Internet Engineering Task Force, Jan. 1996.  
2 Jinyao Yan; Muhlbauer, W.; Plattner, B., "Analytical Framework for Improving the Quality of 
Streaming Over TCP," Multimedia, IEEE Transactions on , vol.14, no.6, pp.1579,1590, Dec. 
2012. 
3 Jinyao Yan ; Katrinis, K. ; May, M. ; Plattner. Media- and TCP-friendly congestion control for 
scalable video streams. Multimedia, IEEE Transactions on , 2006:196- 206 .  
4 Lee Y, Min O, Kim H. Performance evaluation technique of the RTSP based streaming 
server[C]. Computer and Information Science, 2005. Fourth Annual ACIS International Confer-
ence on , IEEE, 2005:414 - 417 .  
5 M Chesire, A Wolman, G M Voelker, and H M Levy. "Measurement and Analysis of a 
Streaming-Media Workload". In USITS, 2001. 

1219




