
GPU-ACCELERATED NON-LOCAL MEANS

SUPER-RESOLUTION RECONSTRUCTION

Kongzheng Sun

, Jiade Li

and Shuyan Xu

Abstract Super-resolution is a process via fusing low-resolution image frames to

obtain high-resolution images that typically requires highly accurate image

registration. The modern non-local means super-resolution algorithm has

successfully evaded the problem of image registration. However, its great

computational impact has encouraged us to seek an approach that is able to make

it more feasible for practical use. Thus in this paper, we propose an optimized

highly efficient GPU-accelerated non-local means super-resolution algorithm. The

proposed algorithm sufficiently utilizes the on-chip shared memory of GPU that

ensures a significant performance boost. Experimental results show that the

proposed algorithm not only overwhelmingly outperforms its CPU counterparts,

but also achieves approximately four times performance increase than a typically

conventional straightforward GPU implementation.

Keywords GPU，super-resolution，nonlocal means

1 Introduction

Super-resolution(SR) reconstruction is the process of combining several low-

resolution image frames (LRs) to generate high-resolution images(HRs). After it

was first proposed by Tsai and Huang [1] decades ago, Elad, et al. [2] compared

three of the typical theories – the maximum likelihood estimator(ML), the

maximum a posteriori probability(MAP) estimator and the projection onto convex

sets approach(POCS) – that since represent the cornerstone of the classical super-

resolution solution within Bayesian framework over the last decade. We refer to

[3] for the representative literature of massive study on super-resolution.

Kongzheng Sun ()

Changchun Institute of Optics, Fine Mechanics and Physics Chinese Academy of Sciences,

Changchun, China

e-mail：skz3148@163.com

Jiade Li

Changchun Institute of Optics, Fine Mechanics and Physics Chinese Academy of Sciences,

Changchun, China

Shuyan Xu

Changchun Institute of Optics, Fine Mechanics and Physics Chinese Academy of Sciences,

Changchun, China

This work is supported by the National Nature Science Youth Foundation of China (No.

60902067).

3rd International Conference on Multimedia Technology（ICMT 2013)

© 2013. The authors - Published by Atlantis Press 1242

mailto:skz3148@163.com

Since super-resolution is deemed as an inverse problem, the traditional

Bayesian framework usually requires image-registration, interpolation and

deblurring. That is, the first step is to estimate the relative motion in the image

sequence, followed by aligning the pixels on the HR grid and post-processing.

While the classical super-resolution algorithms have gained widespread

application in a variety of image processing fields, it is worth mentioning that only

by making image registration accurate enough can the result of super-resolution

reconstruction be good enough. In practical cases, one can hardly make such

assumption that motion estimation is an easy task. The causes are twofold – first,

one cannot expect the estimation parameter to be exact multiples of HR pixel

coordinates due to the limitation of the camera’s resolution; more importantly, the

classical assumption of global motion will not stand as local motion exists in most

actual scenes in nature. Park, et al. [4] proposed an algorithm that considers the

inaccuracy of the motion information. It first analyses the motion error as modeled

noise, which indicates the square of the misregistration error is proportional to the

variance of the noise caused, and inversely proportional to the high-frequency

energy of the image. However, it is a complicated task and the result might also be

unstable. Encouraged by the recent development in denoising algorithms, Protter,

et al. [5] proposed a non-local means (NLM) algorithm to super-resolution. NLM

has been proved to be an effective algorithm to deal with sequences with local

motion and most excitingly, the fuzzy nature of it does not require explicit motion

estimation, exonerating the task from “manually” registering images.

Nevertheless, the seemingly gorgeous features of NLM algorithm can barely

overshadow its major drawback – time efficiency. Since the extensive

neighborhood search scheme remains inevitable, NLM algorithm is virtually

impractical in many demanding situations which, for example, require real-time

processing of image sequences. Therefore, we have resort to parallel devices, most

notably the graphics processing units (GPUs), to boost its overall performance.

GPUs are originally designed for graphics rendering that is computational

intensive. They have outperformed traditional CPUs in many ways that include

highly parallel architecture, multithreading, manycore and very high memory

bandwidth. The discrepancies between the two lie under the fact that more

transistors in GPUs are devoted to computing task rather than flow control and

caching that are typical for CPUs. In recent years, many researchers have

witnessed the development of GPUs and started to harness the horsepower. Zheng,

et al. [6], for example, proposed algorithms for neighborhood denoising based on

GPU. In light of this, we propose a GPU based parallel model for the time-

consuming NLM super-resolution algorithm in this paper, which is structured as

follows. Section 2 formulates the NLM super-resolution problem. Section 3

describes the algorithm we propose. Section 4 reveals and analyses the

experimental results we have conducted over several popular parallel algorithms,

and finally we conclude this paper.

1243

2. NLM SUPER-RESOLUTION

Multiframe super-resolution problem with the k-th known LR frame yk is

usually formulated by minimizing an energy function which can be described as:

1

ˆ arg min (,) . (1)
p

k k k k

k

D H F


 
  

 


X

X y X

Where


is certain kind of norm in which Fk is a matrix for the motion

parameters of the k-th frame; Hk represents the blurring process to the k-th frame

followed by the degradation matrix Dk. X̂ is the super-resolution frame to be

estimated from LR frames.

The idea of NLM super-resolution is originated from the prevailing NLM filter

used in image denoising. It is based on the assumption that the repetitiveness of

pixel patterns accounts for one of the characteristics of the image frames.

Likewise, the energy function for NLM super-resolution is structured into the

following form:

,

,

2

, ,
2

(,) 1 (,)

ˆ arg min (, , , ,) . (2)
k l

H
k l

p
H L

k l i j t

k l t i j N

k l i j t
  


 


  
X

X D E HX E y

where
,

H

k lE and
,

L

i jE denote the patch extractors around pixel (k,l) for high- and

low-resolution images respectively. It should be noted that the reason ,k lD exists is

that the high-resolution patch must be degraded to match the low resolution patch.

They can be illustrated as in Fig. 1. The weight reflects the similarity between

these two patches and is calculated in a similar fashion as in the NLM denoising

filter [7],
2

, ,

2
(, , , ,) exp (, , ,). (3)

2

k l t i j t
k l i j t f k l i j



 
   
 
 

P y P y

with the only difference being the introduction of scale t – the index of t-th frame.

,

H

k lE ,

L

i jE

Fig.1. Description of the high-resolution patch and

the low-resolution patch

1244

Following the routine of solving minimization problems, eq. (2) can be solved

by taking derivation and then equating to 0.The final results can be derived after

several mathematical manipulations:

 

 

, , ,

,

, ,

,

1

,

(,) 1 (,)

,

(,) 1 (,)

ˆ (, , , ,)

(, , , , ,) . (4)

k l k l k l
H

k l

k l k l
H

k l

p T
H T H

k l

k l t i j N

p T
H T L

i j t

k l t i j N

k l i j t

k l i j t



 



  

  


  



 


  

  

X E D D E 1

E D E y

For a much simpler case where the low-resolution extractor only extracts one

pixel, a further simplified form of (4) will be:

,

,

1 (,)

1 (,)

(, , , ,) (,)

ˆ (,) . (5)

(, , , ,)

H
k l

H
k l

p

t

t i j N

p

t i j N

k l i j t i j

k l

k l i j t





 

 



 

 

y

X

According to (5), we must further address two problems:1 – the different scale

of low- and high-resolution patch; 2 –the use of unknown pixel (k,l) and its

neighbors. The first problem has already been discussed in (2), as illustrated in

Fig. 1. The second one can be solved by using an initial estimation of X being an

interpolated version of one LR frame. This technique may lead to a consequence

of iteration. However, in our experiments, we found the result good enough even

with a single iteration.

3. GPU-ACCELERATEDNLM SUPER-RESOLUTION

3.1 Basics of GPU Programming

Fig. 2. A Simple Kernel

1245

Modern GPUs are structured under an array of multithreaded Streaming

Processors (SMs). The multiprocessors are built upon an architecture called

Single-Instruction, Multiple-thread (SIMT) to manage a group of threads running

on them. Therefore, each multiprocessor can execute multiple threads

concurrently.

In compliance with this feature, there is a unique programming model named

CUDA that is responsible for dispatching threads to multiprocessors. That is, each

thread to be executed by GPU is called a kernel and threads are logically arranged

by a Grid-Block model, under which each thread is assigned an unique 3-

component vector comprised of one-, two- or three-dimensional index. Multiple

threads form a block and multiple blocks form a grid. Blocks and grids are also

identified by 3-component vectors, exact the same way as are the CUDA threads.

3.2. A Simple Approach

Since each thread is run by CUDA as a kernel and the NLM super-resolution

algorithm keeps local in nature, an intuitive way of parallelization is to relate each

of the threads to a single pixel and its neighbors on each image frame.

The 3-dimensional thread architecture perfectly satisfies the needs to correlate

each thread to the pixel. For each pixel yt(i,j) located on the t-th frame of the LR

sequence in(5), a GPU thread indexed (ix,iy,t) is assigned to compute weight (k,

l, i, j, t) within an NLM block (which is searched for computing the weight and, of

course, is a different matter from CUDA thread block). The weight is then

accumulated to yt(i,j) and normalized so as to derive an estimation of X̂ . This

process can be illustrated as Fig. 2.

3.3. The Proposed Approach
Although the above algorithm (Fig. 2) sheds some light on how the NLM super-

resolution should be implemented on CUDA, there are still some facts we cannot neglect.

CUDA thread may access three kinds of GPU memory. Each thread has its own private

local memory. The threads bound in a thread block share the block-specific shared

memory. All the threads in the GPU can also access the global memory directly. For all the

three, shared memory is quite distinct from the other two. Since it is built on-chip, it can be

accessed much faster than global memory and thus can be used as cache.

Fig. 3. Proposed scheme of mapping pixels to the thread

1246

As for the simple and straightforward algorithm (Fig. 2), the image data are first loaded

into global memory, then all the operations are done within global memory. However, we

can further optimize the performance of the algorithm if we can sufficiently utilize the per-

block shared memory. To achieve this, we need to cache a related region of the image data

into shared memory before any further operations can take place. The size of the cached

image region could be, for example, (Xb+2Rw+2Rb)× (Yb+2Rw+2Rb)×N which is

determined by the CUDA block size (Xb，Yb), NLM window radius Rw, NLM block radius

Rb as well as the number of image frames N.

This cached size of shared memory should generally be set greater than the CUDA

block size in order to maximize the performance. Therefore, it becomes a little tricky that

each thread in a CUDA block should be responsible for loading multiple pixels into the

shared memory. The scheme we propose to achieve this goal is to create a mapping

between the thread and these pixels. As illustrated in Fig. 3, the area of the shared memory

is divided up into several regions whose size is made equal to the size of a CUDA block

except only for the regions on the boundary of the shared memory. For instance, the thread

depicted by the red triangle will be obliged to load six pixels depicted by the blue squares if

those pixels are within the boundary of the shared memory. This process continues until all

the data required are loaded into the shared memory.

In general, the algorithm using shared memory as cache is outlined in Fig. 4. The main

advantage of the proposed algorithm over the simple algorithm is that while the former has

to synchronize threads twice, most of the calculations are done with respect to shared

memory. Once loading the corresponding image region into shared memory, the global

memory is freed from being read for the whole execution period in a CUDA block. This

dramatically reduces the latency to access global memory and increases the memory

throughput which ultimately leads to an overall performance boost.

4. EXPERIMENTAL RESULTS

Fig. 4. The Optimized Kernel

In this section, we will compare the performance of several distinct NLM super-

resolution algorithm implementations and present the results. We conducted our

1247

experiments on a machine with a GPU of NVIDIA GeForce GTX 460 (Fermi, 384 CUDA

cores with compute capability 2.1), an Intel Xeon quad-core CPU of maximum clock

3.6GHz and an 8GB memory. All the programs were coded under Visual Studio 2010 with

CUDA Toolkit 4.2 in 32-bit mode.

The source we used to perform our tests is an image sequence of LR Lena consisting of

four frames. All the frames are of size 128×128, which are randomly shifted, rotated and

then degraded from an HR image of 256×256. In order for the best of performance

comparison, we set the parameters related to image quality identical. The NLM block for

computing weight is set as a square of size 13×13, and the NLM search area 5×5. The

parameter in (3) has been chosen to be a relatively large one – 13, due to the noises

added to the images during the degradation process. As mentioned earlier, we only apply

single iteration to each experiment since the results, shown in Fig. 5, are acceptable already.

For the sake of comparison, we first execute the NLM super-resolution algorithm (just

as proposed by Protter, et al. [5]) on CPU with single thread, followed by running a revised

multithreaded version which utilizes the power of quad-core processor by scheduling the

computation task to four concurrent threads. Subsequently, we ran the straightforward

simple NLM super-resolution algorithm on GPU, and finally the optimized approach

proposed in this paper. For our Fermi GPU used in this experiment, we have tested out that

the best performance is attained when setting the CUDA block size to 8×8×4. The

experimental results for single threaded CPU, Multithreaded (MT) CPU, simple GPU and

proposed GPU algorithms are shown in Table 1. It is obvious that the proposed GPU NLM

su-per-resolution algorithm in this paper achieves more than 3.8 times performance gain

than the simple algorithm and that its CPU counterparts are overwhelmingly inefficient.

5. CONCLUSION

Fig. 5. Simulation results

Table 1. Performance Comparison

 CPU CPU MT
GPU

Simple

GPU

Proposed

Time

(ms)
1024.9 328.3 30.9 8.1

This paper introduces an optimized GPU-accelerated nonlocal means super-resolution

algorithm that can significantly increase the performance of conventional NLM super-reso-

lution algorithm. Compared to a simple and straightforward GPU implementation, the

proposed algorithm is proper tuned to use the resources of CUDA shared memory so as to

1248

maximize efficiency. The experimental results showed that the proposed algorithm is able

to speed up to four times faster than the simple GPU algorithm.

References

[1] R. Y. Tsai and T. S. Huang, “Multiframe image restoration and registration,” Advances in

Computer Vision and Image Processing, vol. 1, pp. 317–339, 1984.

[2] M. Elad and A. Feuer, “Restoration of a single supersolution image from several blurred,

noisy, and undersampled measured images,” Image Processing, IEEE Transactions on, vol. 6, no.

12, pp. 1646–1658, 1997.

[3] Deepu Rajan and Subhasis Chaudhuri, “An mrf-based approach to generation of

superresolution images from blurred observations,” 2002, 10.1023/A: 1013961817285.

[4] Min Kyu Park, Moon Gi Kang, and Aggelos K. Katsaggelos, “Regularized high-resolution

image reconstruction considering inaccurate motion information,” Optical Engineering, vol. 46,

no. 11, pp. 117004, 2007.

[5] M. Protter, M. Elad, H. Takeda, and P. Milanfar, “Generalizing the nonlocal-means to super-

resolution reconstruction,” Image Processing, IEEE Transactions on, vol. 18, no. 1, pp. 36–51,

2009.

[6] Ziyi Zheng, Wei Xu, and Klaus Mueller, “Performance tuning for cuda-accelerated

neighborhood denoising filters,” in Workshop on High Performance Image Reconstruction

(HPIR), Potsdam, Germany, 2011, Workshop on High Performance Image Reconstruction

(HPIR).

[7] A. Buades, B. Coll, and J. M. Morel, “A non-local algorithm for image denoising,” in

Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society

Conference on.

1249

