
GPU-ACCELERATED NON-LOCAL MEANS 

SUPER-RESOLUTION RECONSTRUCTION 

Kongzheng  Sun
 
, Jiade  Li

  
and Shuyan  Xu 

Abstract Super-resolution is a process via fusing low-resolution image frames to 

obtain high-resolution images that typically requires highly accurate image 

registration. The modern non-local means super-resolution algorithm has 

successfully evaded the problem of image registration. However, its great 

computational impact has encouraged us to seek an approach that is able to make 

it more feasible for practical use. Thus in this paper, we propose an optimized 

highly efficient GPU-accelerated non-local means super-resolution algorithm. The 

proposed algorithm sufficiently utilizes the on-chip shared memory of GPU that 

ensures a significant performance boost. Experimental results show that the 

proposed algorithm not only overwhelmingly outperforms its CPU counterparts, 

but also achieves approximately four times performance increase than a typically 

conventional straightforward  GPU implementation. 
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1 Introduction 

Super-resolution(SR) reconstruction is the process of combining several low-

resolution image frames (LRs) to generate high-resolution images(HRs). After it 

was first proposed by Tsai and Huang [1] decades ago, Elad, et al. [2] compared 

three of the typical theories – the maximum likelihood estimator(ML), the 

maximum a posteriori probability(MAP) estimator and the projection onto convex 

sets approach(POCS) – that since represent the cornerstone of the classical super-

resolution solution within Bayesian framework over the last decade. We refer to 

[3] for the representative literature of massive study on super-resolution. 
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Since super-resolution is deemed as an inverse problem, the traditional 

Bayesian framework usually requires image-registration, interpolation and 

deblurring. That is, the first step is to estimate the relative motion in the image 

sequence, followed by aligning the pixels on the HR grid and post-processing. 

While the classical super-resolution algorithms have gained widespread 

application in a variety of image processing fields, it is worth mentioning that only 

by making image registration accurate enough can the result of super-resolution 

reconstruction be good enough. In practical cases, one can hardly make such 

assumption that motion estimation is an easy task. The causes are twofold – first, 

one cannot expect the estimation parameter to be exact multiples of HR pixel 

coordinates due to the limitation of the camera’s resolution; more importantly, the 

classical assumption of global motion will not stand as local motion exists in most 

actual scenes in nature. Park, et al. [4] proposed an algorithm that considers the 

inaccuracy of the motion information. It first analyses the motion error as modeled 

noise, which indicates the square of the misregistration error is proportional to the 

variance of the noise caused, and inversely proportional to the high-frequency 

energy of the image. However, it is a complicated task and the result might also be 

unstable. Encouraged by the recent development in denoising algorithms, Protter, 

et al. [5] proposed a non-local means (NLM) algorithm to super-resolution. NLM 

has been proved to be an effective algorithm to deal with sequences with local 

motion and most excitingly, the fuzzy nature of it does not require explicit motion 

estimation, exonerating the task from “manually” registering images. 

Nevertheless, the seemingly gorgeous features of NLM algorithm can barely 

overshadow its major drawback – time efficiency. Since the extensive 

neighborhood search scheme remains inevitable, NLM algorithm is virtually 

impractical in many demanding situations which, for example, require real-time 

processing of image sequences. Therefore, we have resort to parallel devices, most 

notably the graphics processing units (GPUs), to boost its overall performance.  

GPUs are originally designed for graphics rendering that is computational 

intensive. They have outperformed traditional CPUs in many ways that include 

highly parallel architecture, multithreading, manycore and very high memory 

bandwidth. The discrepancies between the two lie under the fact that more 

transistors in GPUs are devoted to computing task rather than flow control and 

caching that are typical for CPUs. In recent years, many researchers have 

witnessed the development of GPUs and started to harness the horsepower. Zheng, 

et al. [6], for example, proposed algorithms for neighborhood denoising based on 

GPU. In light of this, we propose a GPU based parallel model for the time-

consuming NLM super-resolution algorithm in this paper, which is structured as 

follows. Section 2 formulates the NLM super-resolution problem. Section 3 

describes the algorithm we propose. Section 4 reveals and analyses the 

experimental results we have conducted over several popular parallel algorithms, 

and finally we conclude this paper. 
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2. NLM SUPER-RESOLUTION 
 

Multiframe super-resolution problem with the k-th known LR frame yk is 

usually formulated by minimizing an energy function which can be described as: 
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Where
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is certain kind of norm in which Fk is a matrix for the motion 

parameters of the k-th frame; Hk represents the blurring process to the k-th frame 

followed by the degradation matrix Dk. X̂ is the super-resolution frame to be 

estimated from LR frames.  

The idea of NLM super-resolution is originated from the prevailing NLM filter 

used in image denoising. It is based on the assumption that the repetitiveness of 

pixel patterns accounts for one of the characteristics of the image frames. 

Likewise, the energy function for NLM super-resolution is structured into the 

following form: 
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where 
,

H

k lE and 
,

L

i jE denote the patch extractors around pixel (k,l) for high- and 

low-resolution images respectively. It should be noted that the reason ,k lD exists is 

that the high-resolution patch must be degraded to match the low resolution patch. 

They can be illustrated as in Fig. 1. The weight reflects the similarity between 

these two patches and is calculated in a similar fashion as in the NLM denoising 

filter [7], 
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with the only difference being the introduction of scale t – the index of t-th frame. 
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Fig.1. Description of the high-resolution patch and  

the low-resolution patch 
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Following the routine of solving minimization problems, eq. (2) can be solved 

by taking derivation and then equating to 0.The final results can be derived after 

several mathematical manipulations: 
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For a much simpler case where the low-resolution extractor only extracts one 

pixel, a further simplified form of (4) will be: 
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According to (5), we must further address two problems:1 – the different scale 

of low- and high-resolution patch; 2 –the use of unknown pixel (k,l) and its 

neighbors. The first problem has already been discussed in (2), as illustrated in 

Fig. 1. The second one can be solved by using an initial estimation of X being an 

interpolated version of one LR frame. This technique may lead to a consequence 

of iteration. However, in our experiments, we found the result good enough even 

with a single iteration. 

 

3. GPU-ACCELERATEDNLM SUPER-RESOLUTION 

3.1  Basics of GPU Programming 

 
 

Fig. 2.  A Simple Kernel 
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Modern GPUs are structured under an array of multithreaded Streaming 

Processors (SMs). The multiprocessors are built upon an architecture called 

Single-Instruction, Multiple-thread (SIMT) to manage a group of threads running 

on them. Therefore, each multiprocessor can execute multiple threads 

concurrently. 

In compliance with this feature, there is a unique programming model named 

CUDA that is responsible for dispatching threads to multiprocessors. That is, each 

thread to be executed by GPU is called a kernel and threads are logically arranged 

by a Grid-Block model, under which each thread is assigned an unique 3-

component vector comprised of one-, two- or three-dimensional index. Multiple 

threads form a block and multiple blocks form a grid. Blocks and grids are also 

identified by 3-component vectors, exact the same way as are the CUDA threads. 

 

3.2. A Simple Approach 

 
Since each thread is run by CUDA as a kernel and the NLM super-resolution 

algorithm keeps local in nature, an intuitive way of parallelization is to relate each 

of the threads to a single pixel and its neighbors on each image frame.  

The 3-dimensional thread architecture perfectly satisfies the needs to correlate 

each thread to the pixel. For each pixel yt(i,j) located on the t-th frame of the LR 

sequence in(5), a GPU thread indexed  (ix,iy,t) is assigned to compute weight (k, 

l, i, j, t) within an NLM block (which is searched for computing the weight and, of 

course, is a different matter from CUDA thread block). The weight is then 

accumulated to yt(i,j) and normalized so as to derive an estimation of X̂ . This 

process can be illustrated as Fig. 2. 

 

3.3. The Proposed Approach 
Although the above algorithm (Fig. 2) sheds some light on how the NLM super-

resolution should be implemented on CUDA, there are still some facts we cannot neglect. 

CUDA thread may access three kinds of GPU memory. Each thread has its own private 

local memory. The threads bound in a thread block share the block-specific shared 

memory. All the threads in the GPU can also access the global memory directly. For all the 

three, shared memory is quite distinct from the other two. Since it is built on-chip, it can be 

accessed much faster than global memory and thus can be used as cache. 

 
Fig. 3. Proposed scheme of mapping pixels to the thread 
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As for the simple and straightforward algorithm (Fig. 2), the image data are first loaded 

into global memory, then all the operations are done within global memory. However, we 

can further optimize the performance of the algorithm if we can sufficiently utilize the per-

block shared memory. To achieve this, we need to cache a related region of the image data 

into shared memory before any further operations can take place. The size of the cached 

image region could be, for example, (Xb+2Rw+2Rb)× (Yb+2Rw+2Rb)×N which is 

determined by the CUDA block size (Xb，Yb), NLM window radius Rw, NLM block radius 

Rb as well as the number of image frames N. 

This cached size of shared memory should generally be set greater than the CUDA 

block size in order to maximize the performance. Therefore, it becomes a little tricky that 

each thread in a CUDA block should be responsible for loading multiple pixels into the 

shared memory. The scheme we propose to achieve this goal is to create a mapping 

between the thread and these pixels. As illustrated in Fig. 3, the area of the shared memory 

is divided up into several regions whose size is made equal to the size of a CUDA block 

except only for the regions on the boundary of the shared memory. For instance, the thread 

depicted by the red triangle will be obliged to load six pixels depicted by the blue squares if 

those pixels are within the boundary of the shared memory. This process continues until all 

the data required are loaded into the shared memory. 

In general, the algorithm using shared memory as cache is outlined in Fig. 4. The main 

advantage of the proposed algorithm over the simple algorithm is that while the former has 

to synchronize threads twice, most of the calculations are done with respect to shared 

memory. Once loading the corresponding image region into shared memory, the global 

memory is freed from being read for the whole execution period in a CUDA block. This 

dramatically reduces the latency to access global memory and increases the memory 

throughput which ultimately leads to an overall performance boost. 

 

4. EXPERIMENTAL RESULTS 

 
Fig. 4. The Optimized Kernel 

 

In this section, we will compare the performance of several distinct NLM super-

resolution algorithm implementations and present the results. We conducted our 
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experiments on a machine with a GPU of NVIDIA GeForce GTX 460 (Fermi, 384 CUDA 

cores with compute capability 2.1), an Intel Xeon quad-core CPU of maximum clock 

3.6GHz and an 8GB memory. All the programs were coded under Visual Studio 2010 with 

CUDA Toolkit 4.2 in 32-bit mode. 

The source we used to perform our tests is an image sequence of LR Lena consisting of 

four frames. All the frames are of size 128×128, which are randomly shifted, rotated and 

then degraded from an HR image of 256×256. In order for the best of performance 

comparison, we set the parameters related to image quality identical. The NLM block for 

computing weight is set as a square of size 13×13, and the NLM search area 5×5. The 

parameter in (3) has been chosen to be a relatively large one – 13, due to the noises 

added to the images during the degradation process. As mentioned earlier, we only apply 

single iteration to each experiment since the results, shown in Fig. 5, are acceptable already. 

For the sake of comparison, we first execute the NLM super-resolution algorithm (just 

as proposed by Protter, et al. [5]) on CPU with single thread, followed by running a revised 

multithreaded version which utilizes the power of quad-core processor by scheduling the 

computation task to four concurrent threads. Subsequently, we ran the straightforward 

simple NLM super-resolution algorithm on GPU, and finally the optimized approach 

proposed in this paper. For our Fermi GPU used in this experiment, we have tested out that 

the best performance is attained when setting the CUDA block size to 8×8×4. The 

experimental results for single threaded CPU, Multithreaded (MT) CPU, simple GPU and 

proposed GPU algorithms are shown in Table 1. It is obvious that the proposed GPU NLM 

su-per-resolution algorithm in this paper achieves more than 3.8 times performance gain 

than the simple algorithm and that its CPU counterparts are overwhelmingly inefficient. 

 

5. CONCLUSION 

 
Fig. 5. Simulation results 

 

Table 1. Performance Comparison 

 CPU CPU MT 
GPU   

Simple 

GPU 

Proposed 

Time 

(ms) 
1024.9 328.3 30.9 8.1 

 

This paper introduces an optimized GPU-accelerated nonlocal means super-resolution 

algorithm that can significantly increase the performance of conventional NLM super-reso- 

lution algorithm. Compared to a simple and straightforward GPU implementation, the 

proposed algorithm is proper tuned to use the resources of CUDA shared memory so as to 
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maximize efficiency. The experimental results showed that the proposed algorithm is able 

to speed up to four times faster than the simple GPU algorithm. 
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