
Router Design and Implementation for a
Polymorphic Multimedia Processor

Ting Yang1, Tao Li2

Keywords: router·polymorphic multimedia processor·fault tolerance·inter-
core communication·multicast

1.1 Introduction

Parallel processing has gone through decades of research and development. Prac-
tical parallel computer architectures, from the time Stanford University put for-
ward the thought of chip multi-processor (CMP) and the prototype of the multi-
processor structure, to 2005, when Intel and AMD apply for parallel processors in
large-scale, finally enter the mainstream of market now [1]. In this process, design
complexity and inter-core wire delay [2] have increasingly become the core prob-
lems of designing parallel computers.

, Ya-Gang Wang1, Bo-Wen Qian2, Yu-Rong LIU2

Abstract. The power and design complexity of parallel processors make the inter-
core communication mechanism face new requirement and challenges. This paper
presents the design of the message passing mechanism and a router for a polymor-
phic multimedia processor, which employs two mechanisms of data communica-
tion, the shared memory among neighbouring processor elements and the remote
messaging with routers. Remote messaging includes remote data transmission and
remote function call. The router, which is the main remote communication
mechanism, has input buffers, and employs a version of the XY routing algorithm.
It is able to do efficient multicasting with fault tolerance. It adopts a specialized
arbitration scheme to simplify design complexity. This improved architecture re-
duces the delay of inter-core communication and cuts power consumption. It also
improves the performance of the polymorphic multimedia processor.

1 Ting Yang(),Ya-Gang Wang
School of Computer, Xi'an University of Posts and Telecommunications, Xi’an, China
e-mail: yangting198962@163.com
2 Tao Li, Bo-Wen Qian, Yu-Rong Liu
School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi’an, China

3rd International Conference on Multimedia Technology（ICMT 2013)

© 2013. The authors - Published by Atlantis Press 1292

mailto:yangting198962@163.com�

In a parallel computer, each processing element executes its program fragment

independently. Sometimes the program fragments need inter-core data exchange
and the processing elements need to pass messages to each other. Therefore, the
performance of the on-chip communication directly influences the overall per-
formance of the parallel processor. The design optimization of routers on a net-
work structure can greatly reduce the message delay. It is therefore the goal of this
paper to explore the message passing design space to help improve the perform-
ance of our polymorphic multimedia processor [7].

At present, there are two dominant types of inter-core communication architec-
tures [3]; one is based on bus shared cache architecture, represented by the Hydra
multi-core processor [4] developed by Stanford University, and the other is based
on the on-chip interconnection structure, represented by the RAW processors [5]
developed by Massachusetts institute of technology.

Literature [6] proposes a low power and tolerance fault routing architecture, in
which each module processes one direction(X/Y) of communication load, it needs
fewer arbitration port number compared with the traditional router. Therefore, the
complexity of the routing arbitration is reduced greatly.

1.2 Polymorphic Multimedia Processor Structure

The PAAG polymorphous array processor [7] employs a simple 2D mesh inter-
connection topology and two mechanisms for inter-core communications. The first
mechanism is the near-neighbor shared memory and the second is the router based
messaging network. The first mechanism is mainly used for distributed instruction
level parallel computing (D-ILP) and the second is used for task parallel computa-
tion in a MIMD environment. We sometime call D-ILP operation level parallel
computing (OLP) [8].

PE00 PE01 PE02 PE03

PE10 PE11 PE12 PE13

PE20 PE21 PE22 PE23

PE30 PE31 PE32 PE33

RU00 RU00

RU10

RU20

RU30

RU01

RU11

RU21

RU31

RU02

RU12

RU22

RU32

RU02

RU12

RU22

RU32

cluster

ALU

D-MEM

I-MEM ICTRL

RU

Fig. 1.1 A cluster of the PAAG polymorphic multimedia processor.

The PAAG processor consists of hierarchically organized clusters of processing
elements (PEs). A 4x4 cluster is shown in Fig. 1.1. Each PE in the 4×4 cluster
consists of arithmetic pipelines (ALU), instruction and data memories (I-mem and

1293

D-mem), a router unit, a SIMD interface (ICTRL), and near-neighbour shared
memories.

This paper focuses on the design and implementation of the two inter-core
communication mechanisms for the PAAG multimedia processor.

1.3 Design and Implementation

1.3.1 Design and Implementation of Near Neighbour Messaging

When a PE needs data exchange with its four-neighbor PEs, it uses the shared
memory. In this 2D mesh, each PE has four neighbors and the shared memory is
divided into four parts as shown in Fig 1.2.

PE

D-MEM

PE

D-MEM

PE

D-MEM

PE

D-MEM

Fig. 1.2 Inter-core communication shared register

The shared memory is in the unified addressing space of a PE. An additional bit
flag is attached to each 32 bit data word. The flag (valid) bit indicates data availa-
bility when operating in blocking mode.

When in blocking mode (the blocking flag is on), an instruction can proceed to
the execution pipeline only if all its operands are available (i.e., the valid flags for
all its operands are set). Otherwise the instruction is placed on wait until its ope-
rands become available. When the instruction finishes execution, the valid flag is
reset. This mimics the data-driven data-flow [9] computation and helps implement
distributed instruction level parallel (D-ILP) processing. In non-blocking mode,
the valid flag has no effect.

1.3.2 Design and Implementation of Message Routers

When a PE needs exchange data with another PE that is not its immediate neigh-
bor, or access data in cluster memory, it must use its router for remote communi-

1294

cation. PAAG is a message passing array processor and its current version is able
to address up to 1024 processing elements. The router is able to handle data ex-
changes and remote function calls, and it has efficient multicast capability.

A router is attached to each PE and the router works in parallel with the execu-
tion pipelines. The router may process the data from or to the local PE/remote
PE/controllers of the cluster.

A PE uses special instructions MOVET (move data to remote PE), MOVEF
(request data from remote PE), MVT (move data to cluster memory), MVF (re-
quest data from cluster memory) to exchange data with remote PEs. Remote func-
tion calls are served with the CALLR instruction and remote function returns with
the RETR instruction. To call a (vector) SIMD function, the instruction CALLC is
used and upon the finish of a SIMD function, the instruction RETC is used.

North_input_ctrl

Sorth_input_ctrl

West_input_ctrl

East_input_ctrl

Local_input_ctrl
_packet_generat

e

xy_routing_logic

xy_routing_logic

xy_routing_logic

xy_routing_logic

xy_routing_logic

Input_ctrl Xy_routing_logic

des_pe_id Local_id

Local_id

Local_id

Local_id

Local_id

Id_table_
mapping

Local_packet
_generate

North_arbiter

Sorth_arbiter

West_arbiter

East_arbiter

local_arbiter

Arbiter Crossbar

North_output_ctrl

Sorth_output_ctrl

West_output_ctrl

East_output_ctrl

Local_output_ctrl

Output_ctrl
Fig. 1.3 The router hardware organization

The overall structure of the router is shown in Fig 1.3. A router is connected
with four neighboring PEs and the local PE. The router hardware is divided into
five parts, each of which includes an input control and packet generation module,
an XY routing module, an arbiter module, and an output control module. A cross-
bar switch connects the five parts.

The router adopts a simple adaptive XY router algorithm to route data packets.
The input control module stores incoming packet into the input FIFO. The XY
routing module calculates the output port for the packet and sends the packet to
the target output control module via the crossbar switch.

An adaptive routing scheme is adopted by the router. Statistics and link status
are constantly monitored by the router. If a port is busy or faulty, a packet may be

1295

routed to another port instead. This provides certain degree of fault tolerance. A
two stage multicast scheme is used and it is able to reach up to 12 target PEs.

Router design starts by defining the packet formats for various types of packets.
The data exchange packet formats and the remote function call/return formats are
given in Table 1.1 through Table 1.4.

Table 1.1 Data packet format (MOVET)

31:29 28:25 24:22 21:10 9:0

000 Size tID Addr PE

31:24 23:16 15:8 7:0

B03 B02 B01 B00

.

B73 B72 B71 B70

In the above, 000 is the packet type code, Size is the payload length in words, tID is the target thread
ID, Addr is the target memory address and PE is the target ID. B00-B70 are payload bytes.

Table 1.2 Data request packet format (MOVEF)

31:29 28:25 24:22 21:10 9:0
001 Size tIDr Addr PEr

 tIDl Addr PEl

Here, 001 is the packet type code, Size is the requested data length, tIDr is the remote thread ID, PEr is
the remote PE ID, and Addr is the data address.

Table 1.3 Remote function call packet format (CALLR)

31:29 28:25 24:22 21:10 9:0
010 tID Addr PE

 rID rAddr rPE

Note that 010 is the packet type, PE is the remote PE ID, tID is the remote thread ID, and Addr is the
program counter value of the function within the thread.

Table 1.4 Remote call return packet format (RETR)

31:29 28:25 24:22 21:10 9:0
011 Size tID Addr PE

31:24 23:16 15:8 7:0
B03 B02 B01 B00

.
B73 B72 B71 B70

Formats for other types of packets are neglected due to space limitation.

1.3.2.1 Design and Implementation of Input Control Module

Each of the four neighbouring directions (North\South\West\East\Local) has an
input control module. The circuit of the module is shown as Fig 1.4. An incoming

1296

packet is pushed into the FIFO. The module then generates an output request sym-
bol, and sends the destination PE ID to the XY routing module. The routing mod-
ule will read the data packet and forward the packet data to the destination port via
the crossbar switch.

Fig. 1.4 Input Control Module Structure for north/south/west/east ports

Local input control module is just a bit more complex than the four neighbor
port input control modules. Due to space limitation, the circuit for this module is
not shown here.

1.3.2.2 Design and implementation of the XY routing module

According to the destination PE or controller ID, the routing module calculates the
routing direction. When the destination ID is a PE, a description of the routing al-
gorithm is given below.
1. Compare the X coordinate PX of the PE with the packet's destination X co-

ordinate DX. If PX=DX, or if PortX is too busy or the neighbour is dead, go to
step 2; otherwise, send packet along the X direction.

2. Compare the Y coordinate PY of the PE with the packet's destination Y co-
ordinate DY. If PY=DY, send packet to local PE port; otherwise, send the
packet along the Y direction.

If a packet is destined to a column (DX) or row (DY) controller, the routing al-
gorithm is as described below.
1. If the packet is for a column controller and DX is reached, send it along the

Y direction; otherwise, send it along the X direction.
2. If the packet is for a row controller and DY is reached, send it along the X

direction; otherwise, send it along the Y direction.

1.3.2.3 Design and implementation crossbar switch control module

The crossbar switch module selects a packet from an input port and sends it to an
output port. This module will generate enable signal based on the arbitration result

1297

and the corresponding signal of output module. It will select to send FIFO read
enable signal to correspond direction of input control module. And this module se-
lects to send output data and valid signal to correspond direction of output control
module based on enable signal and direction.

1.3.2.4 Design and implementation of output control module

There two types of output control modules: one type for N/S/W/E neighbour ports
and one type for the local control. The router directions of output control complete
the transmission of request, the reception of response, the transmission of output
data and data valid signal.

Fig. 1.8 (a) Local output control module, (b) N/S/W/E Output control module

Local output module completes the transmission of output request and the re-

ception of corresponding output, and it decode output data format, the packet type
of output. This module select control signal to send to the information local PE
based on the information of packet head, including the selection of output control
data and directly writing to local PE’s data.

1.4 Conclusions and Future Work

This paper proposes a data communication and router architecture suitable for a
polymorphic multimedia processor. The proposed routing architecture has been
implemented and verified on a Xilinx V6 550 FPGA board. Two types of special

1298

data communication mechanisms have been devised, one is based on near
neighbour shared memory and the other is based on a network of routers. The
routing architecture can perform remote message passing and remote function call.
In order to achieve low power consumption and low cost, a novel arbitration strat-
egy using XY routing is employed. This simplifies some modules, adds fault tol-
erance and multicast to the architecture, and lowers energy consumption.

Future research will focus on analysing the routers throughout, average delay,
maximum/minimum delay, average waiting time, channel load parameters of the
router according to the traffic load of graphics and multimedia applications.

Acknowledgements I would like to thank my teacher Tao Li, who guided me and
other authors who participated in this project. The support of the China Natural
Science Foundation (grant 61136002) is gratefully acknowledged. The support of
Shaanxi Provincial government (grant 2011k06-47) is also acknowledged.

 1.5 References

1. Krste Asanovic, Ras Bodik ,et al, The Landscape of Parallel Computing Research: A View
from Berkeley, University of California Berkley, Technical Report UCB/EECS-2006-183,

Dec. 2006.
2. Paul Gratz, Kathikeyan, Sankaralingam, Heather Hanson. et al. Implementation and Evalua-

tion a Dynamically Routed Processor Operand Network. Proc. IEEE 1st Int. Symp. Network-

on-chip, 2007, pp.7-17
3. Xu Wei-Zhi, Song Feng-Long, Liu Zhi-Yong. etal. On Synchronization and Evaluation Me-

thod of Chipped Many-Core Professor. Chinese Journal of Computers,2010, 33(10):1777-

1787 (in Chinese)
4. HAMMOND L, NAYFEH B A, OLUKOTUN K. A single-chip multiprocessor[R]. IEEE

Computer, 1997, 30(9):79-85

5. KUMAR R, ZYUBAN V, TULLSEN D M. Interconnections in multi-Core architectures: Un-
derstanding Mechanisms, Overheads and Scaling. IEEE Conference Publica-
tions,2005,34(10): 408-419

6. Jongman Kim, Nicopoulos C., Dongkook Park, et al. . A Gracefully Degrading and Energy-
Efficient Modular Router Architecture for On-Chip Networks. Proc. 33rd International Sym-
posium on Computer Architecture，2006 , 34(2),4-15．

7. Tao Li, L. Xiao, H. Huang and J. Han, "PAAG: A Polymorphic Array Architecture for Graph-
ics and Image Processing", Proc. 5th Int. Symp. Parallel Architectures, Algorithms and Pro-
gramming (PAAP2012), Dec. 2013, Taipei, Taiwan, IEEE Computer Society CPS, pp242-249.

8. H. Huang, T. Li and J. Han, "Simulator Implementation and Performance Study of A Poly-

1299

morphous Array Computer", 11th IEEE International Symp. on parallel Computing and appli-
cations (ISPA2013), July 2013, Melbourne, Australia, IEEE CPS, pp.1848-1855.

9. A.H.Veen, "Dataflow Machine Architecture," ACM Computing Surveys, 18(4), Dec 1986,

pp.365–396.

1300

