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Abstract

The problem of construction of boundary conditions for nonlinear equations compat-
ible with their higher symmetries is considered. Boundary conditions for the sine-
Gordon, Zhiber–Shabat and KdV equations are discussed. New examples are found
for the JS equation.

1 Introduction

The subject of applications of classical Lie symmetries to boundary value problems is well
studied (see the monograph [1]). In contrast, the question of involving higher symmetries
in the same problem has received much less attention, unlike, say, the Cauchy problem.
However, one should stress that nowadays the higher symmetries’ approach becomes the
basis of the modern integrability theory [2]. A number of attempts to apply the inverse
scattering method (ISM) to an initial boundary value problem have been undertaken. It
turned out that if both initial data and boundary value are chosen arbitrary, then the ISM
essentially loses its efficiency. On the other, the investigation by E. Sklyanin [3] based
on the R-matrix approach demonstrated that there is a kind of boundary conditions,
compatible completely with integrability. The analytical aspects of problems of such
problems were studied in [4], [5]. After [6], it becomes clear that boundary-value problems
found can be efficiently investigated with the help of the Bäcklund transformation.

Below we will discuss a higher symmetry test proposed in [7], [8] to verify whether the
given boundary condition is compatible with the integrability property of an equation.
It is worthwhile to note that all known classes of boundary conditions compatible with
integrability occur to pass this symmetry test. Boundary conditions involving explicit
time dependence for the Toda lattice compatible with higher symmetries have recently
been studied in [9]. It was established there that finite-dimensional systems obtained from
the Toda lattice by imposing boundary conditions consistent with symmetries at both
ends were nothing else but Painlevé-type equations.

Let us consider an evolution-type equation

ut = f(u, u1, u2, ..., un) (1)

Copyright c© 1996 by Mathematical Ukraina Publisher.

All rights of reproduction in any form reserved.



148 I. HABIBULLIN

and a boundary condition of the form

p(u, u1, u2, ..., uk)|x=0 = 0, (2)

imposed at the point x = 0. Here ui stands for the partial derivative of the order i with
respect to the variable x. Suppose that the equation given possesses a higher symmetry

uτ = g(u, u1, ..., um). (3)

We call the problem (1)–(2) compatible with symmetry (3) if for any initial data prescribed
at the point t = 0, a common solution to equations (1), (3) exists satisfying the boundary
condition (2). Let us explain what we mean more exactly. Evidently, one can differentiate
the constraint (2) with respect to the variables t and τ only (but not with respect to x).
For instance, it follows from (2) that

n∑
i=0

∂p

∂ui
(ui)τ = 0, (4)

where one should replace τ -derivatives by means of equation (3). The boundary value
problem (1)–(2) be compatible with the symmetry (3) if equation (4) holds identically by
means of the condition (2) and its consequences obtained by differentiation with respect
to t.

To formulate an efficient criterion of compatibility of a boundary value problem with
a symmetry, it is necessary to introduce some new set of dynamical variables consisting
of the vector v = (u, u1, u2, ...un−1) and its t-derivatives: vt, vtt, ... . Passing to this set
of variables allows one to exclude the dependence on the variable x. In terms of these
variables, the symmetry (3) and the constraint (2) take the form

vτ = G

(
v, vt, vtt, ...

∂m1v

∂tm1

)
, (5)

P

(
v,

∂v

∂t
, ...,

∂k1v

∂tk1

)
= 0. (6)

The following criterion of compatibility was established in ([8]).

Theorem. The boundary-value problem (1)-(2) is compatible with the symmetry (3) if
and only if the differential connection (6) is consistent with system (5).

We call the boundary condition (2) compatible with the integrability property of equa-
tion (1), if the problem (1)–(2) is compatible with infinite series of linearly independent
higher-order symmetries.

The problem of classification of integrable boundary conditions is solved completely
for the Burgers equation (see [8])

ut = u2 + 2 u u1. (7)

Theorem. If the boundary condition p(u, u1)|x=0 = 0 is compatible at least with one
higher symmetry of the Burgers equation (7), then it is compatible with all even-order
homogeneous symmetries and is of the form c1(u1 + u2) + c2 u + c3 = 0.
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In the Burgers case, boundary conditions of the general form (2) can also be described
completely with the help of the ”recursion operator for the boundary conditions” L =
∂

∂x
+ u, which acts on the set of integrable boundary conditions (see [10]). For instance,

the boundary condition L(c1(u1+u2)+c2 u+c3) = c1(u2+3uu1+u3)+c2(u1+u2)+c3 u = 0
is also integrable.

Let us describe boundary-value problems of the form

a(u, ux)|x=0 = 0, (8)

utt − uxx + sinu = 0, (9)

for the sine-Gordon equation compatible with the third-order symmetry.
As is shown in [11], the complete algebra of higher symmetries for the equation (9) i.e.

uξη = sinu, where 2ξ = x+t, 2η = x−t, splits into the direct sum of two algebras consisting
of symmetries of the equations uτ = uξξξ +u3

ξ/2, uτ = uηηη +u3
η/2, correspondingly, which

are nothing else but the potentiated MKdV equation. Particularly, the following flow
commutes with the sine-Gordon equation

uτ = c1(uξξξ + u3
ξ/2) + c2(uηηη + u3

η/2). (10)

The symmetry (10) is not compatible with any boundary condition of the form (8) unless
c1 = −c2, under this constraint the equation (8) is of one of the forms

u = const, v = c1 cos(u/2) + c2 sin(u/2). (11)

Note that the list of boundary conditions (11) coincides with that found by A. Zamolod-
chikov within the framework of the R-matrix approach [12]. The latter of (11) was studied
in particular cases earlier in [3] and [5]. The compatibility of the former of (11) with the
usual version of ISM was declared earlier in [5]. But the statement was based on a mistake
(see [13]). Our requirement of consistency is weaker than that is used in [5]. Applications
of these and similar problems for the sine-Gordon equation and the affine Toda lattice in
quantum field theory are studied in [14] and [15].

According to the theorem above, one reduces the problem of finding integrable bound-
ary conditions to the problem of looking for differential connections admissible by the
following system of equations equivalent to (10) with c1 = −c2 and v = ux :

uτ = 8uttt + 6ut cos u + 3v2ut + u3
t ,

vτ = 8vttt + 6vt cos u + 6uttvut + 3v2vt + 3u2
t vt.

(12)

One can prove that the boundary conditions (11) are compatible with a rather large
subclass of the sine-Gordon equation such that

uτ = φ(u, u1, ...uk1)− φ(u, ū1, ...ūk1), (13)

where uj = ∂ju/∂ξj , ūj = ∂ju/∂ηj , and the equation uτ = φi(u, u1, ...uki
), i = 1, 2 is a

symmetry of the equation uτ = uξξξ + u3
ξ/2.

Another well-known integrable equation of the hyperbolic type

utt − uxx = exp(u) + exp(−2u) (14)
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has applications in geometry of surfaces. For the first time, it was found by Tzitzeica [16].
The presence of higher symmetries for this equation has been established by A. Zhiber
and A. Shabat [11]. The simplest higher symmetry of this equation is of the fifth order

uτ = uξξξξξ + 5(uξξuξξξ − u2
ξuξξξ − uξu

2
ξξ) + u5

ξ . (15)

It is proved in the article cited that the symmetry algebra for (14) is a direct sum of the
symmetry algebras of (15) and of the equation obtained from (15) by replacing ξ by η.

Let us look for boundary conditions of the form

a(u, ux) = 0, (16)

for equation (14) compatible with the symmetry

uτ = uξξξξξ + 5(uξξuξξξ − u2
ξuξξξ − uξu

2
ξξ) + u5

ξ − uηηηηη−

5(uηηuηηη − u2
ηuηηη − uξu

2
ξξ)− u5

η.
(17)

Rather simple but tediously long computations lead to the following statement.

Theorem. Boundary conditions (16) compatible with the symmetry (17) (and then com-
patible with integrability) are either of the form ux+c exp(−u)|x=0 = 0 or ux+c exp(u/2)±
exp(−u)|x=0 = 0, where c is arbitrary.

Notice that all equations above are invariant under the reflection-type symmetry
x → −x. It is unexpected that equations which do not admit any reflection symmetry
nevertheless admit, nevertheless, boundary conditions compatible with integrability. For
instance, the famous KdV equation

ut = uxxx + 6uxu (18)

is consistent with the boundary condition

u = 0|x=0, uxx|x=0 = 0. (19)

It implies immediately that the boundary-value problem

ut = uxxx + 6uxu, u = 0|x=0

with the Dirichlet-type condition at the axis x = 0 admits an infinite-dimensional set of
”explicit” finite-gap solutions.
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