
Bagging Based Feature Selection for 

Dimensional Affect Recognition in the 

Continuous Emotion Space 

Aihua Chen, Shuai Yuan and Dongmei Jiang1 

Abstract This paper exploits the Bagging based feature selection method on the 

baseline audio features provided by AVEC2012 challenge competition. The 

selected features are input to SVR and RVM regression models, respectively, to 

estimate the affect dimensions arousal, valence, expectation, and power embedded 

in the audio speech. Experiments have been carried out on the word based and 

frame based baseline features, respectively, and the Pearson correlations between 

the estimated affect dimensions and their ground-truth labels are compared to 

those from the traditional correlation based feature selection (CFS) method with 

BestFirst or sequential floating forward selection (SFFS) algorithm. Experimental 

results show that both on word based and frame based baseline feature selection 

obtains the best accuracy in estimating the affect dimensions, while keeping the 

lowest number of features. 

Keywords Affect dimensions · Feature selection · Bagging · Correlation based 

feature selection  

1 Introduction  

Human-computer interactions will be more natural if computers are able to 

perceive and respond to the non-verbal actions of human beings, such as emotion. 

Emotion recognition has attracted increasing attention of researchers from various 

fields including psychology, cognition and computer science. Most of the 

proposed systems have focused on the recognition of acted emotions with the six 

basic emotions introduced in the early 70s by Ekman [1]. However, because the 

limited categorical emotion description methods are not able to capture the 

complex relationship and subtle differences between the spontaneous emotions, 

and neither can they explicitly model the changes of affect over time, analysis of 
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spontaneous affect behavior still remains a challenge which can’t be solved with 

the traditional pattern classification models such as support vector machine (SVM) 

or hidden Markov model (HMM). 

In recent years, some dimensional affect recognition methods have been 

proposed, where the affective state is characterized in terms of a number of latent 

dimensions in the psychological emotion space, aiming to improving the 

understanding of human affect by modeling affect as a small number of 

continuously valued, continuous time signals [2]. During the competition of the 

Audio-Visual Emotion Challenge and Workshops AVEC2011 and AVEC2012 

[2,3], various audio visual feature extraction methods, regression models and later 

fusion methods have been proposed to estimate the dimensions arousal, valence, 

expectation, and power in the emotion space, and promising results have been 

obtained. 

However, in the current affect dimension estimation methods, high dimension 

of the audio and visual features still remains a problem. To capture the 

characteristics of the features over a period, statistical functionals, such as 

arithmetic mean, standard deviation, et al., are normally made on the low-level 

descriptors (LLD) such as energy, pitch and other spectral features. For example, 

1841 features are extracted as the baseline audio feature set in AVEC2012 [2]. In 

[4], 64988 dimensional visual feature vectors are extracted from the temporal 

information with the mean and standard deviation over fixed length temporal 

windows on the face image sequence. 

Feature selection is prerequisite before applying the high dimension features in 

the regression models, besides reducing the computational costs, feature selection 

could remove the noisy information and therefore lead to a better regression of the 

affective state. In recent publications, correlation based feature selection (CFS) [5] 

has been widely adopted on audio or visual features for emotion recognition in 

discrete or continuous emotion space, with sequential floating forward selection 

(SFFS) algorithm [6, 7], or BestFirst algorithm [8] as the searching strategy. 

However, in the above CFS methods, the components of the features are regarded 

as independent of each other. Moreover, in the regression process of feature 

selection, only the correlations between the feature-target as well as between the 

features are considered, while the residuals, which have been proved important in 

[9] for feature selection, are ignored.  

Ensemble learning improves generalization performance of individual learners 

by combining the outputs of a set of diverse base classifiers. Various works have 

demonstrated its significant improvements in the accuracy of feature selection [10]. 

Bagging is a successful ensemble method based on bootstrapping and aggregating 

concepts, i.e., the training set is randomly sampled many times with replacement 

to construct several base classifiers which are then aggregated. 

In this paper, we try to exploit the Bagging based feature selection on the 

baseline audio features of the AVEC2012 database, with the regression tree as the 

predictor, and the sum-of-squares of the residuals, as well as the correlations 

between the predicted labels and ground truth labels to measure the goodness of 

the subsets. After the audio features of the AVEC2012 training set are selected, 

they are input to support vector regression (SVR, [11]) or relevance vector 
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machine for regression (RVR, [11], [12]) to estimate the affect dimensions arousal, 

valence, expectation, and power. Results are compared to those from the audio 

features selected by the CFS related methods. 

The remainder of this paper is as follows. In Section II, we introduce the 

continuous emotion space with the dimensions arousal, valence, expectation, and 

power. Section III describes the Bagging algorithm and the process for feature 

selection. Section IV briefly introduces the regression models SVR and RVR. The 

experimental results are analyzed in Section V, and in Section VI, we draw 

conclusions.  

2 Continuous Emotion Space 

Different with the categorical emotion description, the continuous dimensional 

emotion space thinks affect states are related to one another in a systematic 

manner. According to [13], the majority of affect variability can be covered in a 

continuous space defined in terms of two orthogonal dimensions, valence and 

arousal. Valence refers to how positive or negative the emotion is, ranging from 

miserable feelings to pleasant feelings of happiness. Arousal refers to how excited 

or apathetic the emotion is, ranging from sleepiness to frantic excitement. Later, 

[14] proved that four dimensions activity, expectation, power and valence, are 

needed to satisfactorily represent the similarities and differences in the meaning of 

emotion words. Activity has the same meaning as arousal. Expectation subsumes 

various concepts that can be separated as expecting, anticipating, being taken 

unaware. The power dimension subsumes two related concepts, power and control. 

In the AVEC2011 and AVEC2012 challenge competition workshops [2, 3], the 

four dimensions (arousal, expectation, power, and valence) have been labeled for 

the videos of the training and development set. 

3 Bagging Based Feature Selection 

3.1 Original Audio Features 

For the original features before feature selection, we adopt the baseline audio 
features of the SEMAINE corpus provided by AVEC2012 [2], which consists of 
1841 features, composed of 42 functionals over 25 energy and spectral related low-
level descriptors (LLD), 32 functionals over 6 voicing related LLD, 19 functionals 
over 25 delta coefficients of the energy/spectral LLD, 19 functionals over 6 delta 
coefficients of the voicing related LLD, and 10 voiced/unvoiced durational features. 
The detailed description of the SEMAINE corpus, as well as the baseline audio and 
video features, can be found in [2]. 
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3.2 Bagging Based Feature Selection 

Suppose the training set of ℒ consists of data { 𝓎𝓃, 𝔁𝓃 , 𝓃 = 1, … , 𝒩} where the 

𝓎′s are either class labels or a numerical response, and 𝔁 = (𝓍1 , … , 𝓍ℳ) are the 

input features. Suppose there is a predictor φ(𝔁, ℒ) predicting 𝓎 from the input 𝔁, 

given a sequence of training sets {ℒ𝓀}  each consisting of 𝒩  independent 

observations from the same underlying distribution as ℒ, the mission is to use the  

{ℒ𝓀} to get a better predictor than the single training set predictor φ(𝔁, ℒ). 

 

Fig. 1 The bootstrap aggregating (bagging) procedure 

Take repeated bootstrap samples {ℒ𝓀}  from ℒ , 𝓀 = 1, … , ℬ , and form a 

predictor {φ(𝔁, ℒ𝓀)}. If 𝓎 is numerical, take φ𝒜(𝔁) as 

                φ𝒜 𝔁 =  𝒶𝓋ℬφ 𝔁, ℒ𝓀    (𝓀 = 1, … , ℬ)                                           (1) 

Where the subscript 𝒜  in φ𝒜  denotes aggregation, and 𝒶𝓋ℬ  denotes the 

comprehensive, normally the average, over the ℬ predictors. If 𝓎 is a class label, 

let the {φ(𝔁, ℒ𝓀)} vote to form φ𝒜(𝔁). This procedure, as illustrated in Fig.1, is 

called “bootstrap aggregating”, or with the acronym “Bagging” [15]. 

Referring to [15] and [16], in this paper, we choose the classification and 

regression trees (CART) as the predictor, and the following procedure has been 

adopted for feature selection: 

1. The baseline audio features of the AVEC2012 training set is taken as the 

learning set ℒ for feature selection. 

2. A bootstrap sample ℒ𝓀  is randomly selected from ℒ , and the out-of-bag 

observations are used as the set 𝒯𝓀 to evaluate the importance of the features. 

This is repeated ℬ  times ( ℬ = 100 in our experiments ) giving the 

regression tree predictors  φ 𝔁, ℒ𝓀   (𝓀 = 1, … , ℬ). 

3. For  𝓎𝓃, 𝔁𝓃  ∈  𝒯𝓀, where 𝔁𝓃 is the dataset containing 𝓃 samples, and 𝓎𝓃 

is the set of 𝓃 labels, the bagged predictor is 𝓎 𝓃 = 𝒶𝓋ℬφ(𝔁, ℒ𝓀), and the 

mean squared error (MSE) of the bagged prediction, ℯ(𝒯𝓀), is 𝒶𝓋𝓃(𝓎𝓃 −
𝓎 𝓃)2, meaning the average over 𝓃 targets. For the ℬ out-of-bag observation 
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sets  𝒯𝓀   𝓀 = 1, … , ℬ , the overall out-of-bag MSE ℯℬ is calculated as the 

average of  ℯ 𝒯𝓀   𝓀 = 1, … , ℬ  . 
4. By randomly permuting the out-of-bag data across one variable 𝓍𝓂 at a time, 

and calculating the overall out-of-bag MSE ℯℬ averaged over all trees in the 

ensemble, we can obtain the increase ∆ℯℬ(𝓂) in the out-of-bag MSE due to 

this permutation, divided by the standard deviation taken over the regression 

trees for this feature. 

5. Finally we rank from large to small the {∆ℯℬ(𝓂)} obtained by permuting 

different features. The larger the value, the more important the feature is. 

In our experiments, in drawing the bootstrap samples {ℒ𝓀}  from ℒ , we 

draw 𝒩 out of 𝒩 observations with replacement. This will omit on average 37% 

of observations, i.e. "out-of-bag" observations, for each decision tree. The 

minimal leaf sizes for the bagged trees are set to 5, which are close to optimal for 

the predictive power of an ensemble, and the number of features selected at 

random for every decision split is set as one third of the features. 

4 Regression Models for Dimensional Affect Recognition 

Sparse kernel machines SVR and RVR are two state-of-the-art machine learning 

techniques used in the target problem. In our work, the epsilon-SVR with a radial 

basis function kernel, implemented by LibSVM for matlab [17], is adopted for 

regression. As an alternative sparse kernel technique, RVR, which is based on a 

Bayesian formulation and provides posterior probabilistic outputs, has much 

sparser solutions than the SVR. In our experiments, we adopt the SparseBayes 

package for matlab [18] for the implementation of RVM. 

5 Experiments and Analysis 

5.1 Experimental Setup  

In our experiments, we used the pre-processed version of AVEC2012 data set as 

described in [2]. The data set contains two types of baseline audio features 

according to the length of the episodes: 1) word based with episodes of whole 

words (WL), in which one audio feature per word is extracted; 2) frame based 

with episodes of 2 second sliding windows, where the audio features are extracted 

at 0.5 second intervals, but only during speech. 

In our experiments, affect dimension estimation experiments are performed on 

the above two levels, respectively. For each of the affect dimensions, we firstly 

perform the CFS with BestFirst or SFFS algorithm, and then use the selected 
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features, together with the labels of the corresponding affect dimension, to train 

the SVR or RVM models. Selected features of the testing set are input into the 

trained SVR or RVM models to estimate the continuous values of the affect 

dimensions embedded in the audio speech. For the experiments on the Bagging 

based feature selection, we choose the subsets whose numbers of features do not 

exceed or are very close to those from the CFS methods. 

For each affect dimension, the performance of the feature selection method with 

the regression models is measured via the Pearson correlation between the 

estimated values and the ground truth labels in the testing set. After the Pearson 

correlations of all sessions in the testing set are calculated, we take the average 

over the testing sessions as the final result to evaluate the estimation of the affect 

dimension. 

5.2 Results and Analysis 

Table 1 Pearson’s correlations with the word based baseline features   

SVR Arousal Expectation Power Valence Mean 

AVEC(baseline) 0.054 0.020 0.019 0.062 0.039 (1841) 

Original 0.052 0.016 0.002 0.069 0.035 (1841) 

CFS+BestFirst 0.073 (52) 0.039 (65) 0.001 (62) 0.055 (47) 0.042 (57) 

CFS+SFFS 0.070 (44) 0.059 (53) 0.003 (64) 0.064 (56) 0.049 (55) 

Bagging 0.078 (32) 0.066 (7) 0.011 (41) 0.070 (28) 0.057 (27) 

 

RVR Arousal Expectation Power Valence Mean 

Original 0.073 0.063 0.009 0.078 0.056(1841) 

CFS+BestFirst 0.070 (52) 0.036 (65) 0.022 (62) 0.053 (47) 0.045 (57) 

CFS+SFFS 0.068 (44) 0.019 (53) 0.034 (64) 0.067 (56) 0.047 (55) 

Bagging 0.081 (32) 0.071 (7) 0.010 (41) 0.082 (28) 0.061 (27) 

 
Table 2 Pearson’s correlations with the frame based baseline features  

SVR Arousal Expectation Power Valence Mean 

Original 0.164 0.199 0.099 0.091 0.138 (1841) 

CFS+BestFirst 0.173 (59) 0.206 (64) 0.092 (67) 0.071 (43) 0.136 (59) 

CFS+SFFS 0.185 (28) 0.209 (44) 0.088 (48) 0.074 (38) 0.139 (40) 

Bagging 0.209 (27) 0.220 (40) 0.097 (32) 0.077 (46) 0.150 (37) 

 

RVR Arousal Expectation Power Valence Mean 

Original 0.169 0.205 0.095 0.091 0.140 (1841) 

CFS+BestFirst 0.171 (59) 0.210 (64) 0.090 (67) 0.082 (43) 0.138 (59) 

CFS+SFFS 0.184 (28) 0.211 (44) 0.085 (48) 0.090 (38) 0.143 (40) 

Bagging 0.201 (27) 0.234 (40) 0.115 (32) 0.108 (46) 0.165 (37) 

 

The results on the word based baseline audio features are shown in Table 1, 

where the Pearson correlations of the four affect dimensions arousal, expectation, 
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power, and valence, obtained from SVR and RVM, are listed respectively. The 

number between brackets is the number of features being selected. The results 

with the frame based baseline features are listed in Table 2. 

From Table 1 and Table 2, one can notice that: 1) overall, the Pearson 

correlations from the frame based baseline features are higher than those from the 

word based baseline features, showing that frame based features are more suitable 

for the estimation of affect dimensions in the continuous emotion space. 2) Either 

for word based or frame based baseline features, and either on SVR or RVM 

regression models, for each affect dimension, compared to those from the CFS 

method with BestFirst or SFFS algorithm, the Bagging based feature selection 

method obtains the highest Pearson correlations, while keeping the lowest feature 

numbers (except for that in the estimation of valence on frame based features).  

This means that the Bagging based feature selection can obtain better performance 

than the CFS method with less selected features. 

6 Discussion 

This paper exploits the Bagging based method on the feature selection of the 

baseline audio features provided by AVEC2012 challenge competition. The 

selected features are input to SVR and RVM regression models, respectively, to 

estimate the affect dimensions arousal, valence, expectation, and power embedded 

in the audio speech. Experiments have been carried out on the word based and 

frame based baseline features, respectively, and results are compared to those 

from the traditional correlation based feature selection (CFS) method. 

Experimental results show that both on word based and frame based baseline 

features, for each affect dimension, compared to the CFS method with BestFirst or 

SFFS searching algorithm, the Bagging based feature selection obtains the best 

accuracy in estimating the affect dimensions, while keeping the lowest feature 

numbers. 

In our future work, we would like to expand the Bagging based feature selection 

method on the visual features from the face images, and test its performance on 

more regression models such as long short term memory recurrent neural 

networks [8]. 
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