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Abstract In this paper, we discuss a weighted average of the maximum and mini-
mal principle curvature as the diffusion coefficient for de-noising digital images 
with an additive noise. The main advantage of this approach is that it preserves 
important structures similar to Gauss curvature-driven diffusion, and it has a stable 
and fast numerical algorithm. Moreover, the proposed model helps gaining better 
de-noising results than Gauss curvature-driven diffusion. 
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1 Introduction 

Image de-noising is an important preprocessing step for many applications, such 
as image segmentation, image inpainting, pattern recognition, and robot vision and 
so on. We consider the simplest image degradation model: 

 0 ( , ) ( , ) ( , )u x y u x y n x y= +  (1.1) 
where 0 ( , )u x y  is the degrade image or observed image, ( , )u x y is the real scene 
and ( , )n x y  is the additive Gaussian white noise. We want to recover ( , )u x y  
knowing 0 ( , )u x y . Different methods such as stochastic modelling, wavelets, and 
PDE methods, have been proposed to solve this problem, the excellent introduc-
tion of the relevant work can be found in [1]. 

In this paper, we consider a much popular PDE method. Because of the work of 
Perona and Malik[2], who point out that non-linear diffusion filters can preserve 
the important image edges while removing noises, the PDE methods are now 
widely used in image de-noising. In Perona and Malik's model, the grey levels of 
image ( , )u x y  are diffused according to: 
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 / ( ( , , ) ),u t d iv c x y t u∂ ∂ = ∇  (1.2) 
where 2 2 2( , , ) / ( | | )c x y t s s u= + ∇ , called diffusion coefficient, s  is a threshold. 
More information about this model can be found in [2]. Note that if we 
choose ( , , ) 1c x y t = , then equation (1.2) becomes the standard linear heat equation 
or the classical low-pass filter [3, pp.95-96]. In general, the diffusion coefficient 

( , , )c x y t  can be chosen as a non-increasing function of the gradient [4-8]. From 
their research, we know that the diffusion coefficient ( , , )c x y t  governs the behav-
iour of the diffusion process. Thus, how to choose a better suitable diffusion coef-
ficient becomes an interesting and important factor in using PDE to treat image 
de-noising. 

2 The proposed model 

In the last decade, the intensity images are treated as Monge surfaces in image 
processing [9-14]. The parameterization of the Monge surface of the intensity im-
age is given by 

 ( , ) ( , , ( , )).I x y x y u x y=  (2.1) 
We can find the principle curvatures of the image surface ( , )I x y  as follows:  

 2
1k H H K= + −  and 2

2k H H K= − −  (2.2) 
where H  and K  are the mean and Gauss curvature of the image surface.  

Thus, the geometric property of the image surface can be introduced in image 
denoising. As shown in [15], they propose a model based on mean curvature for 
image inpainting(CCD) by choosing ( , , )c x y t H=  as the control term. The au-
thors in [16] propose a Gauss curvature-driven diffusion (GCDD) by assuming 

( , , ) (| |)c x y t Kφ=  where : 0 R 0Rϕ + +∪ → ∪ is a nonnegative valued function 
with (0) 0φ = , and the authors also point out that the de-noising scheme can pre-
serve important image structures, such as straight edges, curvy edges, ramps, cor-
ners, small-scaled features, etc.  

In the first experiment described below, we want to show that | |K  as the diffu-
sion coefficient is not suitable for some artificial images (For example Figure 1, 
(a)). In the experiment, we use the central difference techniques to calculate the 
value of K  and H . Apply formulas (2.2), we find the value of 1k   and 2k . For 
the 100th  row of the image (Figure 1, (a)), the results of our experiment are sum-
marized as in Figure 1, (b). The value of Gauss curvature is equal to 160 (See Fig-
ure 1 (b), Top Right) which is much larger than the value of principal curvatures 
which are equal to 13 (See Figure 1 (b), Button) on the image edge. So, based on 
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our experiments on a comparison the value of K  with 1k  and 2k , we conclude 
that the GCDD model blur the image edge more serious than the principal curva-
ture when used as the diffusion coefficient in equation (1.2). Hence, it seems that 
the principal curvature as the diffusion coefficient in equation (1.2) is more suit-
able than Gaussian curvature in the area of edge preserved. 

At first, define 1 2min{| |,| |}mink k k=  and 1 2max{| |,| |}maxk k k= . Next, we 
want to investigate the de-noising or edge preserved ability of mink  and maxk  as the 
diffusion coefficient in equation (1.2), respectively. In fact, the minimal principal 
curvature, mink  along the edge is zero, and the noise has a large value of maximal 
principal curvature maxk  [16]. In the second experiment, we choose mink  and maxk  
as the diffusion coefficient, which is called minimal and maximal principal curva-
ture-driven diffusion, respectively. We use the GCCD's numerical algorithm to 
solve the minimal and maximal principal curvature-driven diffusion model. The 
denoising results of the minimal and maximal principal curvature-driven diffusion 
are summarized as in Figure 2 (c) and (d). Based on our experiments for a binary 
image, we get the following results, the edge can be better preserved by the mini-
mal principal curvature-driven diffusion with long time (See Figure 2(c)) and the 
white Gaussian noise is effectively removed by the maximal principal curvature-
driven diffusion (See Figure 2 (d)). So the mink  and maxk  as the diffusion coeffi-
cient, respectively, which produce different effect in image de-noising. 

Through the previous analysis, in this paper, we propose another choice of the 
diffusion coefficient, which is based on the weighted average of the maximal and 
minimal principal curvature. This new model can combine with the advantages of 
two diffusion coefficients, i.e. edge preserved and noise efficiently removed. This 
new model also preserves important geometric structures of image similar to 
GCDD, and it has a fast and stable numerical algorithm. The new model is de-
scribed in Section 2. The numerical implementation is discussed in Section 3, and 
then we compare the de-noising results with GCDD in various natural images. 
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    (a)                                                           (b) 

Fig. 1  (a) Original image (b) Top Left: the value of original image (Row 100), Top Right: the 
value of Gaussian curvature of original (Row 100), Button Left: the minimal principal curvature 
value of original image (Row 100), Button right: the maximal principal curvature value of origi-
nal image (Row 100). 
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   (c)                                                                       (d) 

Fig. 2 Experiments on binary image (a) Exact image (b) Noised exact image (c) 
Noise removed by the minimum curvature-driven diffusion ( 1l = ) (d) Noise re-
moved by the maximal curvature-driven diffusion ( 0l = ). 
In GCDD model, choosing 1 2(| |) | |K k kφ = as the diffusion coefficient, then 

the diffusion coefficient is the geometric average of the absolute value of the 
minimal and maximal principle curvatures. Moreover, in the CDD image in-
painting model, the control term is chosen as 1 2( ) / 2H k k= + , then it is the 
arithmetic average of the minimal and maximal principle curvatures. Motivated by 
this, we consider instead of the diffusion coefficient ( , , ) (| |)c x y t Kφ=  in GCDD 
by the weighted average of the principal curvatures, and then we propose the fol-
lowing parabolic PDE with Neumann boundary condition:  

 
1 2

0

( , , ) ( ( , ) ) ( , ) , 0,
/ 0                             ( , ) , 0,

( , ,0 ) ( , )               ( , ) ,

tu x y t d iv k k u x y t
u n x y t

u x y u x y x y

ϕ= ∇ ∈Ω >
∂ ∂ = ∈∂Ω >

=



 ∈Ω






，

，

，

 (2.3) 

where 1 2( , ) arctan((1 ( )) ( ) )min maxk k t k t kϕ λ λ= − + , 1 2,k k  is the principal curvature 
of image surface ( , ) ( , , ( , ))I x y x y u x y= , 0 ( ) 1tλ< <  is positive weighted pa-
rameter, Ω denotes the entire domain of the image, n is outer normal direction to 
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∂Ω . Note that if we let 1 2( , ) (1 ) min maxk k k kϕ λ λ= − + , thus if 0λ ≡ , the equation 
(2.3) is the minimal principal curvature-driven diffusion, and if 1λ ≡ , the equa-
tion (2.3) is the maximal principal curvature-driven diffusion. The aim of the 
choice of weighted mean of the principal curvature as the diffusion control term is 
to combine the advantages of the two diffusion coefficients. 

Now, we analyze the choices of parameter ( )tλ  and the function φ . We note 
that the smaller diffusion coefficient stands for slow diffusion, however, the larger 
corresponding stands for fast diffusion. Thus, if we want to preserve the edge 
while removal the noise, we need the Equation (2.1) is a slow diffusion on the 
edge and texture, the equation (2.3) corresponding is a fast diffusion on noise. 
Since the minimal principal curvature mink  along the edge is zero, and the noise 
has a large value of maximal principal curvature maxk . So we need ( ) 0tλ →  along 
the edge, and then the equation (2.3) is similar to the minimal principal curvature-
driven diffusion on the edge and texture, it is also the slow diffusion. In the fol-
lowing, we give a simple way to set the parameter ( )tλ . To do this, we use the 
following inequality: 

2 2
1 2 1 2 1 2| | | | (| | | |) 2 | | .max mink k k k k k k k+ ≥ ≥ + ≥ ≥  

Note that the bigger diffusion coefficient can smooth the noise and while blur the 
edge, and then for our aim of edge preserved, since the GCDD model can better 
preserved the edge, so we need  

1 2(1 ( )) ( ) | |,min maxt k t k k kλ λ− + ≤  
thus, the new model also can better preserve the edge. By solving the above ine-
quality, we get the range of ( )tλ  on the edge as follows: 

 0 ( ) ( )min min maxt k k kλ≤ ≤ +  (2.4) 
In the experiment, the parameter ( ) 0.1/ ( 1)t Ktλ = +  which is dependent on the 

time variable, where K  is a constant, which determines the rate of decrease. At 
the beginning of the diffusion process, our proposed model can efficiently remove 
the noise, with the increase of the iterations, the parameter ( ) 0tλ → , and then, the 
value of ( )tλ  will be satisfied the inequality (2.4), thus, the edge can be preserved 
by our proposed. Next, for the choice of function of ( ) arctan( )ϕ ⋅ = ⋅ , the aim is to 
keep the numerical algorithm stable (The details see below)and the stable condi-
tion is 1/ 2t π∆ ≤ (see Theorem 3.1). Of course, the function ( )ϕ ⋅  has many other 
choices, which should be chosen as the monotone increasing bounded function.  
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3 Numer ical Algor ithm and Exper imental Results 

The details of our numerical algorithm are as follows. First, the tested images are 
represented by matrices of intensity values, where each matrix element ,i ju is a 
real value correspondent to the gray scale level of the image ( , )u x y  at the 
point ix x i x= = ∆  and jy y j y= = ∆ , as usual, we suppose x y h∆ = ∆ = . We de-

note ( , , )i j nu x y t  by ,
n
i ju , where nt n t= ∆ , and t∆  is the time scale. The derivative 

of u in relation to the time t  (space scale parameter), that is, tu calculated in 
( , , )i j nx y t  is approximated by Euler's method. For the approximation of the prin-
cipal curvature 1k  and 2k , we use the central difference techniques. We refer to 
[7]. 

The explicit scheme of Equations (2.1) iterates as 

 1
1 2( ( ( , ) )),n nu u t k k uϕ+ = + ∆ ∇ ∇  (3.1) 

and 1 2( , )k kϕ  denotes the conductance function based on the principal curvature at 
the given point. We use a scheme which combines forward and backward differ-
ences for the discretization of the differentiation. Then, 1 2( ( , ) )k k uϕ∇ ∇ can be 
discretized as follows: 

 

1 2

1; 1/2, 2; 1/2, 1, , 1; 1/2, 2; 1/2, 1, ,2

1; , 1/2 2; , 1/2 , 1 , 1; 2, 1/2 2; , 1/2 , 1 ,

( ( , ) )
1 ( ( , )( ) ( , )( )

( , )( ) ( , )( )),

i j i j i j i j i j i j i j i j

i j i j i j i j i j i j i j i j

k k u

k k u u k k u u
h

k k u u k k u u

ϕ

ϕ ϕ

ϕ ϕ

+ + + − − −

+ + + − − −

∇ ∇ =

− + −

+ − + −

 (3.2) 

where 1; 1/2, 1/2 2; 1/2, 1/2,i j i jk k± ± ± ±  is the value of 1 2,k k  at location ( 1/ 2, 1/ 2)i j± ± , 
which can be obtained by interpolation, then using Neumann's boundary condi-
tions and formula (3.1) we calculate ,

n
i ju  for 1, 2, ,n N=  . 

Since the diffusion equations backwards in time can give rise to numerically 
unstable computational methods, unless the problem is appropriately constrained 
or reformulated [17]. In fact, the numerical scheme (3.1) is conditionally stable.  
Theorem 3.1. Assume  1h =  and (0,1/ 2 )t π∆ ∈ , and then, we have the numeri-
cal scheme (3.4) is conditionally stable with respect to the sup norm.  

Now, we investigate the de-noised ability of the proposed model for nature im-
age and compare the experiment results with GCDD model. The experiments on 
Lena.bmp and Goldhill.bmp as followed. We choose the parameter 0.8K = , 

0.1t∆ =  and the noisy variance 20σ =  in all our experiments. In fact, the small 
parameter λ can help to decrease the iteration numbers, and also reduce the com-
putational effort. Thus, in the experiments, as usual, the number of iterations of 
our method is 100, but the number of iterations of GCDD model equals to 300.  

1510



   

For GCDD model, we want to keep the stability of the scheme, we also choose 
( ) arctan(| |)Kφ ⋅ = . From the Figure 3,4 we demonstrate that the proposed model 

can obtain better de-noising results than GCDD model in the area of SNR. 

   
Lena.bmp                                      (a) 

   
        (b)                                          (c)   

Fig. 3 Experiments on Lena.bmp. (a) Noisy image(SNR= 8.4800) (b) GCDD model for noise 
removal(SNR= 13.9166) (c) The proposed model for noisy removal(SNR= 14.8340). 

  
Goldhill.bmp                                 (a)   

   
  (b)                                           (c) 

Fig. 4  Experiments on goldhill.bmp (a) Noisy image(SNR=7.7599) (b) GCDD model for noise 
removal(SNR= 13.0787) (c) The proposed model for noisy removal(SNR=14.3114).  
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