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Abstract. We propose an effective algorithm for impulsive noise removal in color 
images. The proposed method is a two-phase scheme. In the first phase, an im-
pulse detector is designed to identify color pixels which are likely to be contami-
nated by noise; in the second phase, the image is restored by using a detail-
preserving regularization method that applies only to those selected noise candi-
dates. Extensive computer simulations indicate that our proposed algorithm pro-
vides significant improvement over many of the existing filtering algorithms in 
suppressing impulsive noise in color images.  
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1 Introduction 

Obtained images are often corrupted by impulsive noise during the acquisition or 
transmission, due to the image system error and transmission effects. So it is very 
important to eliminate noise in images before subsequent processing such as im-
age segmentation. 

When an image is corrupted by impulsive noise, only part of the pixels is 
changed. Based on trichromatic color theory, color pixels are encoded in three sca-
lar values, namely, red, green and blue (RGB color space). Let  be the vector 

that characterizes a pixel of a noisy color image, ijz  the vector describing impul-

sive noise model. Let ijo  be the noise-free color pixel and p  be the impulsive 

noise probability. Then impulsive noise model is described as,  
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In this paper, we consider random-valued noise model. For this model, each 
component of ijz  has random value in [0, 255].  

Numerous vector filtering techniques have been proposed to remove impulsive 
noise for color image processing since the development of the well-known vector 
median filter (VMF) [2]. For example, vector directional filters (VDF) [3], direc-
tional-distance filters (DDF) [4], hybrid directional filter (HDF) [5].  

Similar to the scalar median filter, these vector filters have undesirable side ef-
fects that tend to blur fine details or destroy edges while filtering out impulses be-
cause they introduce too much smoothing [6]. To trade off detail preservation 
against noise reduction, many improved vector filtering techniques have been de-
veloped. See for example [7] [8] and references therein. In recent years, the so-
called “decision-based” or “switching” mechanism has been introduced into these 
filters. These filters first identify possible noisy pixels and then replace them by 
using the vector median filter or its variants, while leaving all other pixels un-
changed. In [9], fast peer group filter was proposed. In [6], based on the quater-
nion representation of color difference, an efficient color-impulse detector for 
switching vector median filters was presented. In [10], based on vector marginal 
median filter, two switching-based filters were proposed. Many other switching-
based filter were also proposed, see for example [8][11][12][13]. 

In this paper, we propose an effective algorithm for impulsive noise removal in 
color images. The proposed method is a two-phase scheme. In the first phase, an 
impulse detector is designed to identify pixels which are likely to be contaminated 
by noise; in the second phase, the image is restored by using a detail-preserving 
regularization method that applies only to those selected noise candidates. Exten-
sive computer simulations indicate that our proposed algorithm provides signifi-
cant improvement over many of the existing filtering algorithms in suppressing 
impulsive noise in color images.  

The paper is organized as follows. In Section 2, we give our impulsive noise 
removal algorithm. Experimental results are presented in Section 3. 

2 Our  method 

Let r
ijS be a window of size (2 1) (2 1)r r+ × +  centered at ( , )i j , i.e. 

                   {( , ) :| | ,| | }r
ijS k l k i r l j r= − ≤ − ≤                                                                 
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The observed image pixels in the window r
ijS are klx , for ( , ) r

ijk l S∈ . By reorder-

ing klx for ( , ) r
ijk l S∈ in lexicographical order for the convenience of exposition, 

we get R samples: 1 2, , , RX X X , with ( 1)/2ij Rx X += , where 2(2 1)R r= + .  

For 1, 2, , , ( 1) / 2n R n R= ≠ + , define nd  as the distance between 

nX and ( 1)/2RX + , i.e., 

                                ( 1)/2( , )n n Rd d X X +=                                                     (1) 

Then sort the nd  values in increasing order: 

                                (1) (2) ( 1)Rd d d −≤ ≤ ≤ ,                                                (2) 

and define 

                                ( )
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=
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where 2 2m R≤ ≤ − . The statistic defined in (3) is called Rank-Ordered Pixels 
Distance (ROPD) of the pixel ijx . In this paper, we will consider 2, 1m r= =  

and ( 1)/2 1
,n n Rd X X += , and set 2ROPD( , ) ROPD ( , )i j i j= .  

Similar to ROAD statistic defined in [14], the ROPD statistic provides a meas-
ure of how close a color pixel is to its eight most similar neighbours, and the 
ROPD statistic can be used to detect impulsive noise as in the following algo-
rithm. 

Algor ithm 1 (Noise detection) For color image pixel ( , , )R G B
ij ij ij ijx x x x= , if 

its ROPD statistic is greater than a predetermined threshold Tol, then the color 
pixel ijx  is contaminated by noise. Otherwise, this color pixel is noise-free. 

To implement the algorithm, a very important step is to select the threshold 
Tol. If Tol is too small, then many noise-free pixels may be classified as noise 
pixels. If Tol is too large, then many noise pixels may be classified as noise-free 
pixels. So the selected Tol should balance the above two situations. On the other 
hand, Tol should magnify the impulsive noise probability. Considering these con-
ditions, we select Tol according to the following rule: Set iTol = 140, let q be the 
proportion of the pixels in the image whose ROPD values are less than iTol. Then 
we choose Tol as 

                               Tol (iTol 100)q q= − × × .                                           (4) 
Extensive simulations conducted on standard test images indicate that with Tol 

selected according to (4), our algorithm is very effective. 
In the following, the set of noise candidates is denoted by  
                   N {( , ) :  is contaminated by niose}iji j x= . 
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The set of all uncorrupted pixels is denoted by Nc . 
After the noise detection, the noise pixels can be restored by some nonlinear 

regularization method. Here we use the ideas in [15][16], to design our algorithm.  
Algor ithm 2 (Two-phase impulsive noise removal algorithm for color images): 
1. Initialize x  to be the observed image. 
2. Apply algorithm 1 to the image x  to get the noise candidate set N . 
3. For all ( , ) Ni j ∉ , take ˆij ijy x=  . For all pixels in N , take ˆijy be the mini-

mizing point of the following functional over N : 

( ) ( )
( , ) N ( , ) N ( , ) \N

( ) 2
ij ij

ij mn ij mnp p
i j m n V m n V

f y y y y xφ φ
∈ ∈ ∈

  = − + − 
  

∑ ∑ ∑


   (5) 

where ( ) | | ,1 2t t αφ α= < <  ijV  is the four nearest neighbors of ( , )i j , 

\ NijV is composed of those neighbors of ( , )i j  which have been detected as 

signal candidates. 
4. Output ŷ . 
 
We use the GBB method to find the minimizer of the objective function (5). 

More details can be found in M. Raydan [17]. 
In our experiments, we use 1-norm in (5), that is 1p = . And we set 310γ −= , 

5
1 210 , 0.1, 0.5ε σ σ−= = = , 0 1, 0.3 , 1, 1Mα σ δ= = = = , and all runs are 

stopped when 41
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3 Exper imental results 

In this section, we exam the performance of our proposed algorithms using two 
color images “Lena” and  “Peppers”, which are shown in Figure 1. For compari-
son, we also test many other algorithms presented in the literature. These include 
VMF [2], VDF [3], DDF [4], HDF [5], AVDF [11], AVMF [8], MAVMF [8], 
FPGF [9], AVMMF [13], MVMF [10], RVMF [10], FHSF [12] and quaternion 
based algorithm, denoted by QVMF [6]. 

In the experiments, all above-mentioned techniques use 3 3×  filter window. 
For DDF, we choose 0.75p =  as in [4], see [4] for details. For AVDF, we use 
AVDF2 in [11], since it has the best performance in removing impulsive noise 
among all AVDFs in [11]. For AVMF, we choose 1 4λ = , and for MAVMF, we 
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choose 2 12λ =  as in [8]. For QVMF, the parameter Tol takes the value of 22 as 

in [6], see [6] for details. For FPGF, we choose Tol = 45, 3m =  as in [9]. For 
AVMMF, we set 3m =  as in [13]. For MVMF and RVMF, we set 3t =  as in 
[10]. And for FHSF, we set 10, 11, 48Ht St Lt= = = and 3m =  as in [12]. 

For the measurement of the restoration quality the commonly used root mean 
squared error (RMSE) expressed through the peak signal-to-noise ratio (PSNR) 
was used as the RMSE is a good measure of the efficiency of impulsive noise 
suppression. The PSNR is defined as 

                                    

10

2

2
1 1

255PSNR 20log
MSE

MSE
3

m n

ij ij
i j

x x

m n
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where ,m n  are the image dimensions, and ijx  and ijx  denote the original image 

vector and its estimation at location ( , )i j , respectively. 
 

          
(a)                                                                   (b) 
 

Fig. 1 Test images.   (a) Lena,     (b) Peppers. 
 
Since RGB is not a perceptually uniform space in the sense that differences be-

tween colors in this space do not correspond to color differences perceived by 
humans, the restoration errors are often analyzed using the perceptually uniform 
color spaces [9]. So in this paper the restoration errors were also analyzed using 
the Normalized Color Difference (NCD) defined as [1], 
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where *L  represents lightness values and * *( , )u v represents chrominance values 

corresponding to original ijx  and noisy (or filtered) ijx  samples expressed in 

CIELUV color space. 
All our experiments are run when MATLAB 7.7 is used on a PC equipped with 

Intel Core(TM) 2.80 GHz, 3.48 GB RAM memory.  
In the experiments, the two original test images are contaminated by random-

valued impulsive noise of noise levels ranging from 10% to 30% with increments 
of 10% using the noise model (1). We summarize the performance of different 
methods in Table 1 and Table 2. From the tables, we see that our proposed algo-
rithm achieves a significantly high PSNR and low NCD. 

Based the above results, we can conclude that our proposed algorithm is very 
effective and superior to the other existing methods in random-valued impulsive 
noise removal. 

 
Table 1 Comparison of the presented algorithms for the image Lena. 

noise level 0% 10% 20% 30% 
Method NCD PSNR NCD PSNR NCD PSNR NCD PSNR 
NONE 0 ∞ 0.0775  18.59  0.1527  15.66  0.2320  13.83  
VMF 0.0300  33.10  0.0320  32.41  0.0346  31.48  0.0389  29.63  
VDF 0.0329  32.50  0.0359  31.32  0.0413  28.97  0.0533  25.26  
DDF 0.0316  32.81  0.0338  32.00  0.0377  30.35  0.0460  27.25  
HDF 0.0309  33.21  0.0336  32.44  0.0377  31.11  0.0462  28.56  
AVDF 0.0323  33.53  0.0350  32.64  0.0404  30.89  0.0533  27.76  
AVMF 0.0009  46.20  0.0070  33.62  0.0220  26.43  0.0604  20.91  
MAVF 0.0250  33.77  0.0299  32.66  0.0353  31.05  0.0444  28.16  
FPGF 0.0011  41.61  0.0062  36.90  0.0120  34.00  0.0199  30.78  
AVMMF 0.0322  32.72  0.0344  31.97  0.0372  31.03  0.0416  29.23  
MVMF 0.0317  32.95  0.0342  32.05  0.0377  30.66  0.0457  27.76  
RVMF 0.0317  32.95  0.0343  32.05  0.0377  30.65  0.0458  27.75  
FHSF 0.0035  39.34  0.0110  31.59  0.0188  28.90  0.0284  26.88  
QVMF 0.0004  46.61  0.0067  34.56  0.0153  31.10  0.0290  27.98  
PROPOSED 0.0001  52.32  0.0048  39.36  0.0099  35.92  0.0178  32.66  
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Table 2 Comparison of the presented algorithms for the image Peppers. 

noise level 0% 10% 20% 30% 
method NCD PSNR NCD PSNR NCD PSNR NCD PSNR 
NONE 0 ∞ 0.1404  18.07  0.2094  15.10  0.2794  13.31  
VMF 0.0393  32.02  0.0629  31.30  0.0832  29.97  0.0596  28.10  
VDF 0.0457  30.60  0.0866  29.11  0.0921  26.54  0.1071  22.51  
DDF 0.0421  31.39  0.0758  30.27  0.0888  28.19  0.0991  24.55  
HDF 0.0725  32.29  0.0846  31.22  0.0894  29.34  0.0997  26.49  
AVDF 0.0400  32.64  0.0432  31.33  0.0543  28.94  0.0671  25.27  
AVMF 0.0011  45.16  0.0752  32.34  0.0888  25.14  0.1241  19.91  
MAVF 0.0347  32.63  0.0663  31.33  0.0687  29.25  0.0808  26.44  
FPGF 0.0014  40.38  0.0524  35.68  0.0775  32.21  0.0659  29.20  
AVMMF 0.0410  31.63  0.0661  30.93  0.0865  29.61  0.0904  27.79  
MVMF 0.0408  31.92  0.0427  30.87  0.0851  29.23  0.0921  26.72  
RVMF 0.0408  31.92  0.0427  30.86  0.0852  29.22  0.0922  26.71  
FHSF 0.0058  37.80  0.0777  31.53  0.0826  28.69  0.0889  26.58  
QVMF 0.0011  42.30  0.0754  33.30  0.0816  29.70  0.0920  26.44  
PROPOSED 0.0002  49.35  0.0733  37.37  0.0764  33.93  0.0637  31.68  
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