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Abstract

The singular manifold expansion of Weiss, Tabor and Carnevale [1] has been success-
fully applied to integrable ordinary and partial differential equations. They yield infor-
mation such as Lax pairs, Bäcklund transformations, symmetries, recursion operators,
pole dynamics, and special solutions. On the other hand, several recent developments
have made the application of group theory to the solution of the differential equations
more powerful then ever. More recently, Gibbon et. al. [2] revealed interrelations be-
tween the Painlevè property and Hirota’s bilinear method. And W. Strampp [3] hase
shown that symmetries and recursion operators for an integrable nonlinear partial dif-
ferential equation can be obtained from the Painlevè expansion. In this paper, it has
been shown that the Hirota–Satsuma equation passes the Painlevé test given by Weiss
et al. for nonlinear partial differential equations. Furthermore, the data obtained by
the truncation technique is used to obtain the symmetries, recursion operators, some
analytical solutions of the Hirota–Satsuma equation.

1 Introduction

The Hirota–Satsuma (H–S) equation

ut = uxxx/2 + 3uux − 3vvx,
vt = −vxxx − 3uvx

(1)

is classified as a soliton equation by B. Fuchssteiner [4]. B. Fuchssteiner also claims that
this equation has a bi-hamiltonian formulation and obtains countably many conserved
quantities and symmetry generators. Complete integrability of this equation is conjectured
by Hirota and Satsuma.

In this paper, we will see that the Painlevé analysis is a powerful tool for construction
of symmetries, explicit solutions and Lie–Bäcklund transformations. It also helps to find
Lax pairs and recursion operators and plays an important role in the study of a chaotic
behaviour of nonlinear partial differential equations.
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2 Painlevé analysis for the H–S equation

Let φ(x, t) = 0 be the solution singularity manifold of (1) and

u = φp
∞∑

j=0
ujφ

j ,

v = φp
∞∑

j=0
vjφ

j .

(2)

Substituting (2) into (1), we have p = −2, resonances at j = −1, 1, 2, 4 and a double
resonance at j = 6. Hence if the compatibility conditions hold, we can have six arbitrary
functions to write down a general solution of (1). From the recurrence relations, we also
have

u0 = −2φ2
x, v0 = 0;

u1 = 2φxx, v1 arbitrary;
u2 =

(
−3v2

1 + 6φxx2 − 8φxφxxx + 4φxφt
)
/12φ2

x, v2 arbitrary.
(3)

The coefficient functions u4, u6 and v6 are found to be arbitrary and the corresponding
compatibility conditions are satisfied identically for the above values of u0, v0, u1 and u2.
Hence, the system of quasilinear partial differential equations (1) passes the Painlevé test
for PDE’s.

In the following we are going to use the above results to derive some valuable facts for
the H–S equation.

3 Exact solutions of the H–S equation

Let us truncate the series in (2) at the second term and assume that uj = 0, j ≥ 3. Then
we have

u = u0

φ2 + u1
φ + u2,

v = v0
φ + v1

φ + v2.
(4)

If we let u3 = 0 in the recurrence relation, the right-hand side also vanishes and this
assumption brings no restriction on the unknowns. The assumption v3 = 0 leads to

3φxv1xx − 3φxxv1x − (3φxu2 − φxxx + φt)v1 + 6φ2
xv2x = 0. (5)

Meanwhile u3 = v3 = u4 = v4 = 0 yields

−3(v1v2)x + 3(u1u2)x +
1
2
u1xxx − u1t = 0, (6)

and
v1xxx + 3u2v1x + v1t + 3v2xu1 = 0. (7)

On the other hand, u3 = v3 = u4 = v4 = u5 = v5 = 0 yields the system

u2t = u2xxx/2 + 3u2u2x − 3v2v2x,
v2t = −v2xxx − 3u2v2x.

(8)
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Hence, u2, v2 must be a solution of the H–S equation (1). Hence (4) is an auto Bäcklund
transformation of the H–S equation. To find a truncated exact solution of the H–S equa-
tion, one needs to solve the equations (5), (6), (7) and (8) for φ, v1 and v2. This is an
over-determined system and in what follows we are going to find some special solutions.

4 Some special solutions

Let u2(t, x) = A and v2(t, x) = B be the constant solution of system (8) and let v1(t, x) = 0.
Then equations (5) and (7) are satisfied automatically and (6) leads to

6Aφxx + φxxxx − 2φxt = 0, (9)

and the formula for u2(t, x) reduces to

12Aφ2
x = 6φxx2 − 8φxφxxx + 4φxφt. (10)

We can integrate (9) once in x to get

φxxx + 6Aφx − 2φt = −2C ′(t), ′ =
d

dt
. (11)

The equation (10) is a partial differential equation with constant coefficients and has a
general solution of the form

φ(x, t) = C(t) + ek(x+(k2+6A)/2t) (12)

where k is a complex number and C(t) is an arbitrary function. To determine them, let us
substitute this solution into (10). This gives C ′(t) = 0 and hence C(t) = C is a constant.
Using this result for φ(t, x), one can find the truncated solution (4) from the formula

u = −2φ2
x

φ2 + 2φxx
φ + A,

v = B.

(13)

Substituting this set of two functions into the H–S equation (1), we find a dispersion
relation between k and A: k2 − 24A = 0. Hence a special solution for the H–S equation is
given by

u = 2k2C ekζ

(C + ekζ)2
+ A,

v = B,

ζ = x + 5k2t/8. (14)

5 Symmetry by truncated expansions

Let us write system (1) as

ut = F (u, v) = uxxx/2 + 3uux − 3vvx,
vt = G(u, v) = −vxxx − 3uvx.

(15)

To find the symmetries, we need the linearization of (15) about a solution u, v;

w1t = ∂
∂εF (u + εw1, v + εw2)|ε=0 = w1xxx/2 + 3(uw1)x − 3(vw2)x,

w2t = ∂
∂εG(u + εw1, v + εw2)|ε=0 = −w2xxx − 3uw2x − 3w1vx.

(16)
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Any solution w1, w2 of (16) yields a symmetry or infinitesimal transformation about u, v.
That is, the transformation

t∗ = t,
x∗ = x,
u∗ = u + εw1,
v∗ = v + εw2

(17)

leaves the system (1) form-invariant.
Comparing (16) with (6) and (7), we see that u1, v1 is the solution of the linearized

system about u2, v2. Hence, any solution of the system formed by equations (5), (6), (7)
and (8) for φ, v1 and v2 gives a symmetry of the H–S equation.

6 Discussion

The Painlevé analysis provides a new and powerful tool for constructing explicit solutions
for nonintegrable as well as integrable dynamical systems. But it only gives possible
solutions, so one must check the results if they are actual solutions of the given nonlinear
partial differential equation. On the other hand, in general the necessary calculations are
too tedious to do by hand. In those cases, we interacted with some packages just like
MATHEMATICA.
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