
The Implementation of Ray Tracing Global

Illumination Basing on JavaScript

Zhang Hao
1
, Du Xiaorong and Wang Beishan

Abstract. Global illumination rendering is one of the pivotal techniques necessitated

by 3D scenes' simulating; thus the quality of global illumination renderer would

significantly affect the reality of such a simulation. Based on ray tracing, one of the

major algorithms which aim to achieve great and realistic rendering, a relatively

simple global illumination renderer is constructed via JavaScript supplemented by

HTML5. Such a renderer can be used to render a comparatively verisimilar

scenograph which is capable of displaying the geometrical optical phenomena

engendered by reflection, refraction and shadow. Since this renderer is purely

constructed via the standard programming language on Web, JavaScript, without any

additional plug-ins or libraries, the program, theoretically, is able to fulfill the task of

rendition of a given 3D scene in any personal computers installed with a mainstream

browser.

Keywords: Realistic rendering ∙ Global illumination ∙ JavaScript ∙ Ray tracing

1 Introduction

Ray tracing is a specific algorithm in order to achieve global illumination whose lights

are radiated, for improving the efficiency of ray casting, from a camera rather than a

light source, thereby externalizing a well-designed model of 3D-scenes. Ray tracing

algorithm, one of the major rendering algorithms in the global-illumination realm, is of

relatively simple theories, easy accomplishment and ability to generate diverse types

of verisimilar pictures with high quality. In the former studies, when investing the

algorithm to eliminating hidden surfaces in 1968, Appel. A proposed the description of

ray tracing algorithm[1]. In 1979, Kay and Greenberg furthered this description to

embrace the consideration of light refraction. One year later, Whitted became the first

one to propose a practical model of global illumination, named Whitted model, and

presented the general paradigm of how to achieve ray tracing algorithm including

consideration of reflection, refraction as well as transmission and shadow.

The fact that the advent and boom of information high ways avails huge amount of the

data with convenience and speediness becomes a common impetus that motivates

many Internet enterprises to conduct their research around 3D-images. A JavaScript

API for rendering interactive 3D graphics, WebGL[2], is formulated by their efforts.

1
Zhang Hao

School of Physics and Engineering, Sun Yat-sen University, Guangzhou Guangdong, China

Du Xiaorong ()

Institute of Power Electronics & Control Technology, Sun Yat-Sen University, Zhuhai Guangdong,

China

e-mail: duxr@mail.sysu.edu.cn

Wang Beishan

School of Physics and Engineering, Sun Yat-sen University, Guangzhou Guangdong, China

3rd International Conference on Multimedia Technology（ICMT 2013)

© 2013. The authors - Published by Atlantis Press 1613

As a web language, JavaScript not only provides a friendly renderer in different

mobile terminals, but also surmounts the traditional weaknesses of graphics delineated

by XML documents with the help of the strong Canvas tag[3]. In this essay, the

implementation of ray tracing algorithm is represented and recapitulated to convey

some beneficial discussions about global illumination[4].

2 Theories of renderer Establishment

In this section, we first investigate the fundamental way to achieve a ray tracing

algorithm, and then recapitulate the shading model we adopted, Phong illumination

model. A description of a spot light model is followed by a specific approach towards

improving the efficiency of ray casting. In the final part, a way to achieve camera

positioning is presented and further discussed.

2.1 Achievement of Ray Tracing

A fundamental ray tracing algorithm needs to take into account refraction and

reflection affecting interactive 3D images[5]. Light rays emitted from the source

intersect the surface of an object and then are bent by refraction or deflected by

reflection. Consequently, light rays would follow their new paths until they intersect

another object and repeat the similar process mentioned above. As only a percentage

of rays will be observed by cameras, the tracking direction distinguishes itself from

natural ray direction with an inverse orientation, which means the origin of rays is the

camera instead of a light source. This process can be clearly described in details in Fig.

1.

Fig. 1 A light ray is emitted from the camera, across a pixel on the image surface, travelling until it

intersects a scene object. After this process, another three types of rays, reflective, refractive and

shadow rays, are potentially produced

If the shading model of intersection points is reflective, tracing the new reflective ray

is needed and so applied to refractive one. Differentiated the rays mentioned before,

shadow rays are from intersection points and ends at light sources. If the path shadow

rays intersect with an object, the shading of intersection points can be modified by

transparency of those objects that block rays from light sources.

2.2 Phong Illumination

In this essay Phong illumination[6] is adopted to make a renderer. In this model, the

shading of intersection points is jointly dependent on three types of rays generated by

ambient, diffuse reflection of rough surfaces as well as the specular reflection of shiny

surfaces, as shown in Fig. 2.

1614

(a)Diffuse reflection (b)Specular reflection

Fig. 2 It illustrates how Phong reflection model describes the way a surface reflects light as a

combination of the diffuse reflection and specular reflection

The Phong model can be described as:

𝐼𝑟 = 𝐼𝑎𝑟𝐾𝑎𝑟 + 𝐼𝑃𝑟𝐾𝑑𝑟 ∙ 𝑳 ∙ 𝑵 + 𝐼𝑃𝑟𝐾𝑠𝑟 ∙ (𝑵 ∙ 𝑯)𝑛

𝐼𝑔 = 𝐼𝑎𝑔𝐾𝑎𝑔 + 𝐼𝑃𝑔𝐾𝑑𝑔 ∙ 𝑳 ∙ 𝑵 + 𝐼𝑃𝑔𝐾𝑔𝑟 ∙ (𝑵 ∙ 𝑯)𝑛

𝐼𝑏 = 𝐼𝑎𝑏𝐾𝑎𝑏 + 𝐼𝑃𝑏𝐾𝑑𝑏 ∙ 𝑳 ∙ 𝑵 + 𝐼𝑃𝑏𝐾𝑠𝑏 ∙ (𝑵 ∙ 𝑯)𝑛

 (1)

Generally, the simple illumination only needs to consider light intensity of red,

green and blue components to render pixel shading. This approach is appropriately

called trichromatic system rendering which is adopted in this essay.

As usual, precisely considering the effects of shadow requires pre-light pass

techniques[7] in which the effects of light sources ought to be rendered separately.

When merely taking into account the direct shadow generated by light sources, yet, the

transparency of the object, or objects if the shadow ray intersects with multiple

elements, is the only factor contributing the shading of the intersection point.

Therefore, the product of the transparency of the object and the original shading

determines the real shading of the pixel.

2.3 Light Sources

Common light sources include collimated light, pointolite, spotlight and area light.

Since it is not difficult to produce a model of these light sources[8], we only briefly

introduce the model adopted of spotlight. On the basis of a pointolite, using a

corresponding optical structure to guide and limit the lights towards a cone shape we

get a special light source, called spotlight. There are diverse models describing

spotlight and one of them is shown as Fig. 3.

Fig. 3 A model of spotlight

As for the model mentioned above, the light cone consists of two different areas,

called an inner cone and outer cone respectively. The interior angle of the inner cone is

indicated by 𝜃 and 𝛷. The range of a coefficient describing the gap areas is from

zero to one. The value, one, represents the lightest intensity. This coefficient dwindles

1615

from 1 to 0 when approaching the outer boundary of the cone. Another parameter, p, is

used to determine the rate of attenuation of the light intensity.

 𝑠𝑝𝑜𝑡 𝛼 =

 1 𝑐𝑜𝑠𝛼 ≥ 𝑐𝑜𝑠
𝜃

2

(
𝑐𝑜𝑠𝛼 −𝑐𝑜𝑠

𝛷

2

𝑐𝑜𝑠
𝜃

2
−𝑐𝑜𝑠

𝛷

2

)𝑝 𝑐𝑜𝑠
𝛷

2
< 𝑐𝑜𝑠𝛼 < 𝑐𝑜𝑠

𝜃

2

 0 𝑐𝑜𝑠𝛼 ≤ 𝑐𝑜𝑠
𝛷

2

 (2)

2.4 The Algorithm of Basic Element Intersection

The general way to calculate intersecting points of a light ray and a quadric surface is

already fully discussed[9] and so are the specific ways targeting on any of them[10]. In

this essay, we narrow our focus on how to achieve a simple and effective algorithm to

calculate the intersecting point of light rays and polyhedral surfaces, in which the more

complex bounding box technology is unnecessary.

 When an object is made up of several polygons, then calculating the intersection

of rays and polyhedron is to be transformed into calculating the intersection of rays

and polygons. Traditionally, in order to avoid the sampling in empty voxel and greatly

improve the efficiency of ray casting, boundary box techniques are often utilized[11].

In this essay, we just apply what we learn from linear algebra to the same problem

instead of using the traditional techniques and we will get an easy path towards our

goal.

Since each polygon can be divided into several triangles, we only need to discuss

the way adopted with a triangle ∆𝑃1𝑃2𝑃3. First, consider a situation that the ray origin,

O point (a light source or a intersection point where new rays are generated), is not on

∆𝑃1𝑃2𝑃3(the excluded situation need some further but brief discussion and therefore

are not mentioned in this essay).

The expression of the ray is indicted as：

 𝒅 = 𝑙𝑶𝑷𝟏 + 𝑚𝑶𝑷𝟐 + 𝑛𝑶𝑷𝟑 (3)

In the expression, l, m and n are the components of the vector 𝒅 using the basic

vectors 𝑶𝑷𝟏，𝑶𝑷𝟐，𝑶𝑷𝟑.

 Fig. 4 Linear expression of 𝒅

 Combined with Fig. 4, we can expand the expression to：

 𝑥1 − 𝑥𝑜 𝑙 + 𝑥2 − 𝑥𝑜 𝑚 + 𝑥3 − 𝑥𝑜 𝑛 = 𝑑1

 𝑦1 − 𝑦𝑜 𝑙 + 𝑦2 − 𝑦𝑜 𝑚 + 𝑦3 − 𝑦𝑜 𝑛 = 𝑑2

 𝑧1 − 𝑧𝑜 𝑙 + 𝑧2 − 𝑧𝑜 𝑚 + 𝑧3 − 𝑧𝑜 𝑛 = 𝑑3

 (4)

1616

Using Cramer’s rule we have:

∆=

𝑥1 − 𝑥𝑜 𝑥2 − 𝑥𝑜 𝑥3 − 𝑥𝑜
𝑦1 − 𝑦𝑜 𝑦2 − 𝑦𝑜 𝑦3 − 𝑦𝑜
𝑧1 − 𝑧𝑜 𝑧2 − 𝑧𝑜 𝑧3 − 𝑧𝑜

Also: ∆𝑥=

𝑑1 𝑥2 − 𝑥𝑜 𝑥3 − 𝑥𝑜
𝑑2 𝑦2 − 𝑦𝑜 𝑦3 − 𝑦𝑜
𝑑3 𝑧2 − 𝑧𝑜 𝑧3 − 𝑧𝑜

 ∆𝑦=

𝑥1 − 𝑥𝑜 𝑑1 𝑥3 − 𝑥𝑜
𝑦1 − 𝑦𝑜 𝑑2 𝑦3 − 𝑦𝑜
𝑧1 − 𝑧𝑜 𝑑3 𝑧3 − 𝑧𝑜

 ∆𝑧=

𝑥1 − 𝑥𝑜 𝑥2 − 𝑥𝑜 𝑑1

𝑦1 − 𝑦𝑜 𝑦2 − 𝑦𝑜 𝑑2

𝑧1 − 𝑧𝑜 𝑧2 − 𝑧𝑜 𝑑3

 (5)

Because we consider a situation that O is not on the surface where ∆𝑃1𝑃2𝑃3 is located,

∆ would not be equal to zero. By discussing the interrelation of the signs of ∆, ∆𝑥 ,

∆𝑦 and ∆𝑧 , we can demonstrate that the rays intersect ∆𝑃1𝑃2𝑃3 if and only if ∆ has

a different sign from all of ∆𝑥 , ∆𝑦 and ∆𝑧 . Therefore, we can avoid calculating the

coordinates of those intersection points that are not on ∆𝑃1𝑃2𝑃3 by initially making a

judgment on the signs of ∆, ∆𝑥 , ∆𝑦 and ∆𝑧 .

2.5 Positioning Camera

One of the advantage of combining HTML5 and JavaScript to write a program is its

convenience of achieving data exchange—users only need to click a labeled button if

they want to change the position of the camera or other parameters of the object

elements. In order to keep the focus upon the scenes, it is required to rotate the

directional axis of the camera when it has been moved. Using the rotational matrix of

Euler Angle we are able to achieve this goal[12], as indicated in (6) and Fig. 4.

𝑅𝑥𝑦𝑧 𝛼, 𝛽, 𝛾 = 𝑅 𝑍, 𝛼 ∙ 𝑅 𝑌, 𝛽 ∙ 𝑅 𝑋, 𝛾 =
cos𝛼 sin𝛼 0
−sin𝛼 cos𝛼 0

0 0 1
 ∙

cos𝛽 0 −sin𝛽
0 1 0

sin𝛽 0 cos𝛽
 ∙

1 0 0
0 cos𝛾 sin𝛾
0 −sin𝛾 cos𝛾

 =

cos𝛼cos𝛽 sin𝛼cos𝛽 −sin𝛽
cos𝛼sin𝛽sin𝛾 − sin𝛼cos𝛾 sin𝛼sin𝛽sin𝛾 + cos𝛼cos𝛾 cos𝛽sin𝛾
cos𝛼sin𝛽cos𝛾 + sin𝛼sin𝛾 sin𝛼sin𝛽cos𝛾 − cos𝛼sin𝛾 cos𝛽cos𝛾

 (6)

 Fig. 4 An Euler Angle illustration

3 the Renderer Interface and Illustrations

The renderer interface on the basis of JavaScript with several labelled buttons,

available to set or change the optical parameters of objects and the positions of

cameras, is presented as Fig. 5.

1617

Fig. 5 The renderer interface constructed

 Using rotating labels to shift the perspective of cameras, we can get different

pictures as Fig. 6.

 (a) front view (b) 60°top view (c) 45°side view

Fig. 6 Pictures produced from different perspectives

Using geometric optics labels to change the refractive index of a rendered picture, we

can get another picture as presented in Fig. 7.

 (a) nellipse = 1 (b) nellipse = 1.2

Fig. 7 Two pictures with different elliptical refractive indexes

 When mirrors are added as the two walls, we get an interactive 3D image as Fig.

8.

1618

Fig. 8 One example of interactive 3D images

4 Conclusion

 In this thesis, a ray-tracing renderer is successfully constructed basing on the

combination of JavaScript and HTML5 without any additional plug-ins and libraries,

which is capable of simulating basic optical phenomena including refraction, reflection

and shadow. In addition to Canvas, a label providing great support to graphics,

HTML5 also affords many other labels of friendly interfaces and convenient

interaction. Therefore, it is extremely handy to change the optics parameters or shift

the camera after the 3D graphics has been rendered, if users desire so.

However, such a renderer only succeeds in some basic and fundamental 3D figures

and it is because of this that we can bypass the complex data structure. For that reason,

expanding the shape pool of this renderer needs a radical change of the data structure.

In the final analysis, although JavaScript programs are both user-friendly and

programmer-friendly, when considering the number-crunching of ray tracing

algorithm, we might have to resort to another language, such as C++ and Java to

render an immersive image with innumerable objects.

5 Acknowledgment

This paper was supported by “The Guangdong Provincial Production Education

and Research Major Projects under Grant No.201210558026” and “Zhuhai Science

and Technology Plan for Production and Research under Grant

No.2012D0501990030”.

References

1. Appel, A. (1968) Some techniques for shading machine rendering of solids. AFIPS Spring Joint

Computing conference, 37-45

2. Xu Hui, Wei Lihao, L et al (2012) WebGL based HTML5 Application Performance Analyzer.

Journal of Convergence Information Technology, 7(23), 280-289

3. Marshall, Brandeis. (2010) Taking the tags with you: Digital photograph provenance, 2nd

International Symposium on Data, Privacy and E-commerce. doi: 10.1109/ISDE.2010.18

4. Antal, G., Martinez, R., Csonka, F,. Sbert, M., Szimay-Kalos, L. (2003) Combining global and

local global-illumination algorithms. Spring Conference on Computer Graghics, 185-192

1619

5. Milo, Yip. (2010) Learning more about computer graphics by JavaScript: Ray Tracing.

http://www.cnblogs.com/miloyip/archive/2010/03/29/1698953.html. Cited 15 March 2010

6. Phong, B.T. (1975) Illumination for Computer-generated Pictures. Comm.ACM, 18(6), 311-317

7. Michael, J. (2009) Light Pre Pass in XNA: Basic Implementation.

http://mquandt.com/blog/2009/12/light-pre-pass-in-xna-basic-implementation. Cited 21 May 2009

8. Milo, Yip. (2010) Learning more about computer graphics by JavaScript: Basic light sources.

http://www.cnblogs.com/miloyip/archive/2010/04/02/1702768.html. Cited 3 April 2010

9. Sun, J.G., Hu, S.M. (2009) Basics of Computer Graphics, 2rd edn. Tsinghua University Press,

Beijing

10. Cheng, Y., Li, Y., Cong, W. (2000) the Analysis of Ray Tracing Algorithms. Shenyang Institute of

Aeronautical Engineering Journal, 17(2), 10

11. Rubin, S. M., Whitted, T. A. (1980) A 3-dimensional representation for fast rendering of complex

scenes. Computer Graphics, 14(3), 110-116

12. Shi, M. (2004) the Analysis of basic movement of a virtual human in three-dimensional terrain

environment. PHD thesis, North China Electric Power University

1620

http://www.cnblogs.com/miloyip/archive/2010/03/29/1698953.html
http://mquandt.com/blog/2009/12/light-pre-pass-in-xna-basic-implementation
http://www.cnblogs.com/miloyip/archive/2010/04/02/1702768.html

