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Abstract: Compressive Sampling (CS) is a new technique for information acqui-
sition and processing. In this paper we propose a new algorithm based on Pixel 
Value Substitution (PVS) to reconstruct the nature images when the model of 
compressive sampling is very simple. By indirectly utilizing the fact that usually 
the gradient of a natural image is sparse, we divide the image into many small 
blocks, and for each block, we use only one typical value to represent all the pix-
els' values of that block. And thus we can construct a new matrix with full column 
rank from the Gaussian measurement matrix, and get a new system of equations 
that can be solved by the least square method which is also used in the greedy al-
gorithms. And through analyzing we find out the statistical feature of the recon-
structed signal, and the factors that influence the reconstruction quality, which tell 
us that, in order to get the most appropriate value for each pixel, the reconstruction 
needs to be repeated as is shown in the concrete steps of the algorithm, and also 
the block’s size should be appropriate. At last, experimental results are given to 
demonstrate the viewpoints in this paper and they show that, in addition to im-
proving the quality, PVS can also significantly reduce the time consumption.  
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1 introduction 

Traditional signal processing is based on the Nyquist sampling theorem, which 
means the signal can be accurately recovered when the sampling frequency is at 
least two times of the signal frequency. In recent years, a new signal processing 
technique has appeared, which is called Compressed Sensing (CS) [1, 2]. And by 
using the CS theory, signal sampling frequency can be greatly reduced. By using 
the fact that many natural signals are sparse in some transformed domains, the ba-
sic idea of CS is that we can transform the signal into two incoherent domains [3]. 
If the original signal is x, the transformation operator is f, and observation operator 
is g, then the transformed signals will be f(x) (which is sparse) and g(x). CS theory 
tell us we can choose just a small part of the elements set of g(x) to recover f(x) 
and x accurately, and the choice is arbitrary [4], which means we can use any part 
of the set, premising that the number of elements is sufficient. There are many 
specific methods based on CS theory, and main types are greedy algorithms [5, 6, 
7] and l1 convex optimization [2]. 

Today, signal and image processing technology has been able to process an im-
age in various ways, but in some occasions, when collecting images information 
or when observing images, the equipment can not match the needs of complex 
processing, and so that the amount of captured data should be small, and the sam-
pling mode should be simple. This is closely related with the CS theory, and it’s 
necessary to research how to recover an image when it was sampled in some very 
simple ways. Suppose that x is the original image signal, and we observe x directly 
by using a Gaussian measurement matrix A, and then we can get the observed sig-
nal:  

xy A= .                                                       (1) 

This is a very simple sampling mode, and this article propose an algorithm 
about how to recover x from y in this condition. 

2 Pixel Value Substitution 

In this section we propose the PVS algorithm, discuss the reconstruction quality, 
and show the concrete steps of the algorithm. 

2.1 Principle 

We can see from (1) that, it’s an underdetermined system of equations, and if we 
know nothing about x, then we cannot get the solution of these equations. But for-
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tunately, natural images do have some rules, and one rule is that the gradient of a 
natural image is sparse [8], which means most pixels of the gradient image have 
the values that are close to zero. And then we know that, usually, values of adja-
cent pixels are almost the same, and we can use just one value to represent them. 

We know that, if we multiply a pixel value of x by a column of A, then we can 
get a part of y .so we can rewrite the observation equations on the following form: 
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Here, NMRA ×∈ , 1MR ×∈y , and N=×nm . And xij denote the pixel in the ith 
row and jth column of an nm× image x, and Iij denote a column of the measure-
ment matrix A, which correspond to xij. 

Now, we divide the image x into T small blocks, and the rth block is denoted 
by Dr. Assume that Dr has kr pixels, and then:  

NT =+++ kkk ...21 . 

We know that，usually, all pixel values of Dr are almost the same ,thus: 
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Here, )(r
ijx denote the pixel in the ith row and jth column of x, and it belongs to 

Dr; TMRB ×∈ , 1TR ×∈βα , ; and rα represent a typical value that can substitute for 
each )(r

ijx ,and obviously, rα is close to them; and β  is the normalization of α . 
And (3), (4), and (5) tell us that we can reduce the number of unknown parame-

ters by substituting one value for several values. According to the knowledge of 
random distribution, Ir is a random vector, and elements of Ir and Iij have the same 
distributional parameters. So we know that B is a Gaussian matrix too. And ac-
cording to the Marchenko-Pastur law [9], it's easy to know that: 

                                     TBMT =⇒≤ )Rank( .                                              (6) 
And (6) tell us if T is less than M, then B would be a full column rank matrix. 

Therefore, we can use the least-square method to solve (5), and can get the solu-
tions: 
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2

minargˆ ββ
β

By −=  .                                           (7) 

Then we can get α̂  and the reconstructed image signal x̂ : 

rrr
r

ij kx βα ˆˆˆ )( == .                                              (8) 

2.2 Analysis of the Reconstruction Quality 

Assume that we have got x̂ , and now we analyze the difference between x̂ and x, 
which is also called residual x∆  .We know that: 

∑ ∑
= ∈

−>=−−=<∆
T

r Dji
r

r
ij

r

xxxxxx
1 ,

2)(2

2
))ˆ((ˆ,ˆ α                                   

∑ ∑ ∑
=

−≥
T

r ji ji

r
ij

r
ijr

r
xxk

k1 ,

2

,

)(2)(
2

]})()([1{ .                                  (9) 

And equalities hold when and only when: 
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In other words, when rα̂ is the average value of Dr, >∆∆< xx, has a minimum 
energy, and under the condition (10), we use *β̂ , *α̂ , *x̂ to rewrite β̂ , α̂ , x̂ . 

On the other hand, if x̂  is the original signal, then the observation signal will 
be xy ˆˆ A= , and the reconstructed signal will exactly be x̂ . But if the observation 
signal is y, then it will be almost impossible that the reconstructed signal is x. So 
we need to know the difference between y and ŷ . Let y∆ denotes the difference, 
and we know that: 
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So y∆ can be considered as a random vector, and according to knowledge of 
chi-square distribution, when A is a large dimensional matrix, there is an approx-
imate proportional relationship between >∆∆< yy, and >∆∆< xx, . So in the sta-
tistical sense, when *ˆˆ xx = , >∆∆< yy, reaches the minimum value, or the differ-
ence between y and ŷ is the smallest. We know that if the difference of 
observation signals is smaller, then the difference of reconstructed signals will be 
smaller too. So *x̂  is the nearest signal to x̂  which is recovered from y, or the re-
constructed signal tends to be *x̂ . 
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Let a denote the average value of a small block, b denote the value of a pixel in 
the center of this block, and c denote the value of a pixel on the edge of this block, 
and then usually the difference between a and b is smaller than the difference be-
tween a and c. So in the center of a block, *x̂ and x have a relatively high degree 
of similarity, while on the edge, have a relatively low degree of similarity. So in 
order to get the most appropriate value for each pixel, we can repeat the dividing 
and the reconstructing for several times, and each time use a different way to di-
vide the image, as is shown in 2.4. 

The conclusion that the reconstructed signal tends to be *x̂  is correct only in 
the statistical sense, which means we can find from the results of large number of 
experiments that, generally speaking, *x̂ is most close to x. But it is not true in a 
specific experiment, because y∆ also leads to a reconstructed signal. We know 
that: 

exxxxy +=−+= *** ˆ)ˆ(ˆ AAA .                                       (12) 

So y can be divided into two parts: one part is *x̂A and (7) tell us we can get the 
reconstructed signal *x̂ from this part; the other part is e, and also, we can get the 
reconstructed signal δ , which is something we don’t expect to see because it can 
cause some uncertain interference. According to (7), we define: 

2
minargˆ ββ
β

B−=∆ e .                                           (13) 

And so we can know that the value of >< ee, or >∆∆< ββ ˆ,ˆ  should be as small 

as possible. Divide e into two parts: β̂∆= BPe , and β̂∆−= BV ee , then, accord-
ing to the related knowledge of matrix theory, we can know that VP ee ⊥ , and : 

><+>>=<< VVPP eeeeee ,,, . 

And if we define: 
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then, λ should also be as small as possible. For the TM × matrix B, according to 
the knowledge of subspace projection, λ increases when M decreases and T main-
tains constant, or when M maintains constant and T increases. 

Now we can get some factors that affect the quality of the reconstructed signal. 
The first one is the image’s own features, such as the smoothness of the image, 
and they will affect e. The second one is the compression ratio NM / which is also 
called q. If other conditions remain unchanged, increasing q is equivalent to in-
creasing M while letting T remain unchanged, and so it is equivalent to decreasing 
λ  which can improve the quality. And q also affects the upper limit of T, because 
the derivation (6) should be tenable. The third factor then, is T. Decreasing T is 
equivalent to decreasing λ and this could help to improve the quality. However, a 
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smaller T means a larger average size of the blocks, and usually >< ee,  will be 
lager too, and this will reduce the quality. So T should be an appropriate value. Of 
the three factors, the first two are usually unalterable, while the last one is what we 
can take advantage of. 

2.3 Comparison with the Greedy Algorithms  

Actually, this algorithm is similar to the greedy algorithms, such as OMP, ROMP, 
etc, because both of the two kinds use some particular column vectors called key 
column vectors to solve problem. We can see from (3)(5)(12) that: 

wwxxxxy CABABAA ==∆+=−+= ],[ˆˆ)ˆ(ˆ **** β .                        (15) 

And it’s easy to know that usually: 

NTTTT +++==>> ,...,2,1;,...,2,1, jiww ji .                             (16) 

So, the column vectors of B are more important than the column vectors of A, 
and they are the key column vectors. The difference, then, is that in the PVS algo-
rithm we can construct all of these vectors directly and quickly, while in the gree-
dy algorithms we obtain them by using iterative methods which are usually time-
consuming jobs. And the experimental results will show that the PVS algorithm 
can save much time. 

2.4 Concrete Steps  

In order to get a better result, we need to repeat the dividing and reconstructing. 
Usually, we divide the image into many small blocks and each non-edge block is 
of the same size called the basic size. Assume that the size of the original image is 

nm×  ( N=×nm ), the basic size is ts× , and the size of the block at the top-left 
end of the image is 21 uu × , and meanwhile define: 

),12mod(12,),11mod(11 tunvsumv −−+=−−+= .                  (17) 

tvunsvum /)22(2,/)11(2 −−+=−−+= LK .                       (18) 

Then, it’s easy to know that the nm×  image can be divided into 
LKT ×= blocks, and the block at lower right end of the image has 21 vv ×  pixels. 

For the rth block Dr, we have know that each )(r
ijx  has a different correlation de-

gree with rα , so we can construct a relative weight coefficient  matrix ρ with the 
size nm× , and )(r

ijρ  represents the relative weight coefficient between )(r
ijx  and 
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rα . And also we can construct a total weight coefficient matrix p to accumu-
late ρ , because the reconstruction will be repeat for ts× times, and each repeti-
tion needs a different ρ . 

The following is the concrete steps: 

Algorithm：Pixel Value Substitution (PVS) 
Input: y, A, m, n, s, t. 
Initialization: su =1 , tu =2 , 0=p , 0ˆ =x . 
Steps: (i)   Divide the image according to (17)(18);  
(ii)   Construct B according to (3)(4)(5)(i); and set ρ according to (i); 
(iii)  Calculate β̂  and α̂  according to (7)(8); 
(iv) r

r
ij

r
ij

r
ij xx αρ )()()( ˆˆ += ; ρ+= pp ; 

(v)  111 −=uu ; if 01>u , go to (i); else su =1 ; 
(vi) 122 −=uu ; if 02 >u , go to (i); else end.  
Output: ijijij pxx /ˆˆ =  and x̂  is the output. 

3 Exper iments, Results and Discussion 

In order to show the effect of the block’s size on the quality of the reconstructed 
image, in the experiments we choose three different basic sizes including 

55× , 33× , and 22× for the dividing of the image, and so we can get 3 specific 
methods of the PVS algorithm called 55× PVS, 33× PVS, and 22× PVS. Of 
course we should make sure that MT ≤ .  

Now we discuss how to set ρ . For the 55× or 33× PVS, we know that usually, 
Dr has a center pixel, and if we use Ω to denote all the center pixels mentioned 
above, and all the edge pixels of the while image, then we could have:  
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And for the 22× PVS, then, always we have: 

1=ρ . 

Take the 512512×  gray LENA test image as the original image, and in order 
to increase the speed, it is divided into 256 sub-images [10], and the size of each 
sub-image is 3232× . These sub-images are processed independently.  
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Fig. 1 The PSNR of each method. Red, green, blue and black curves denote respectively the 
PSNR of the 4 methods as are shown 

As a contrast, the ROMP algorithm is used too, and the following is the specif-
ic process. First, 5 level wavelet transform is applied to the original image, and so 
we can get the sparse image. Then, the sparse image is divided into 256 sub-
images, and the size of each sub-image is 2512× , which means each sub-image 
also contains 1024 pixels. And they are processed independently too. 

Fig 1 shows the peak signal to noise ratio (PSNR) of each of the four methods 
when q  varies from 0.1 to 0.5. We can see from Fig 1 that, for the PVS algorithm, 
a proper basic size or T can help to improve the PSNR and the quality of the re-
constructed image, if the others conditions keep constant. The experimental results 
also show that a proper T should satisfy 8.0/ <MT . Again, we can see from Fig 1 
that, whatever the value of q is, the best method is not ROMP but one of the 3 
PVS methods, which means that compared with ROMP, PVS can get a better re-
sult when the basic size is the most proper one. And one reason is that, what the 
ROMP algorithm reconstructs directly is not the original image itself but the 
sparse image transformed from it, and just one pixel of this sparse image may 
have a great influence on the whole original image. 

Fig 2 shows the original image and the reconstructed images, and we can see 
from Fig 2(c) that subjective visual effect is good. 
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     (a) The original image                      (b) M/N=0.1, PSNR=24.92                    (c) M/N=0.5, PSNR=33.03 

Fig. 2 The original image and the reconstructed images based on PVS. (a) denotes the 512×512 

LENA test image. (b) denotes the reconstructed image when the basic size is 5×5 and M/N= 
0.1, and here PSNR=24.92. (c) denotes the reconstructed image when the basic size is 2×2 and 
M/N=0.5, and here PSNR=33.03 
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Fig. 3 The time consumption of each method. Red, green, blue and black curves denote respec-
tively the time consumption of the 4 methods as are shown 

Fig 3 shows the time consumption of the four methods. We can see that com-
pared with ROMP, PVS can significantly reduce the time consumption. In fact, 
ROMP needs many times of iteration to search those key columns, and each itera-
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tion needs much more time than the previous one. But PVS is different, because 
each repetition needs the same time which is in inverse proportion to the number 
of the repetitions. So, the time consumption of PVS is usually much lower than 
that of ROMP, which means PVS can save much time. 

3 Conclusion 

In this paper, we have discussed the reconstruction of the nature images when the 
sampling model is very simple. We used a new way to solve the problem, and 
proposed the PVS algorithm including its concrete steps. We also analyzed the re-
construction quality and the similarities and differences of the two algorithms. The 
experimental results told us it’s a feasible method and in some degree is better 
than the greedy algorithms. However, we do have some future work to do. For ex-
ample, we can use blocks of different sizes to divide the image, or we can propose 
an adaptive selection method so that the algorithm can automatically choose the 
most suitable basic size. 
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