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Abstract
As an example of how to deal with nonintegrable systems, the nonlinear partial dif-
ferential equation which describes the evolution of long surface waves in a convecting
fluid

ut + λ(uxxx + 6uux) + 5βuux + (uxxx + 6uux)x = 0,

is fully analyzed, including symmetries (nonclassical and contact transformatons),
similarity reductions and the application of the ARS algorithm to the reductions. As
a result of the calculations, the Galilean invariance of the equation is shown and all the
possible solutions arising from the related ODE through these methods are obtained
and classified in terms of the physical parameters.

0. Introduction

Integrable systems are rare in Nature. In instead one encounters often dynamical systems
described by Non Linear Partial Differential Equations (NLPDE) which in spite of its
wide range of application to physical problems are unfortunately of a nonintegral type.
However the definition of integrability may be given (and we have used in this paper a
very precise meaning for it) and the interest still lies in dealing with such nonintegrable
or almost integrable, or partially integrable Partial Differential Equations (PDE), whose
particular exact solutions – in the case they exist – could be of paramount importance in
describing such different physical processes as multilayer fluid dynamics, massive trans-
port information through doped optical fibres, gravity–capillarity microwaves, low noise
detectors based on nonclassical states of light and about one hundred more physical and
even straight technological applications.

This paper is a theoretical attempt in the direction of devising algorithmic procedures
dealing with NLPDE which we know to be integrable from the outset. Actually we show
in the first part of the paper the importance of the equation in the field of two layer
fluid dynamics, but we also show how none of the known procedures based upon Painlevé
Tests, Lie Classical Symmetries, Non Classical Blumen and Cole Symmetries and Contact
Symmetries gives any clue of how the Equation can be treated to yield some information on
the exact solutions that are known experimentally to exist. Then we turn to more advanced
– and still algorithmic – methods (with special attention to the Singular Manifold Method)
that are able to open different ways to extract information on the exact solutions of this
NLPDE and at the same time can be applied to a wide range of other non linear problems.
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The paper is divided as follows. First we derive the Equation from first principles
mainly based upon the Navier–Stokes equation for fluids with the Rayleigh number above
its critical value. In section two the problem of symmetries is analyzed in its various
versions. Next we entirely devote section three to Painlevé Analysis and Similarity reduc-
tions. It is in section four where we deal with the so–called Conditional Painlevé Property
and in section five where we find through the previous analysis a rich class of solutions
that are then classified according to the value of the constant parameters. We close with
future prospects for further work in this direction.

1. The Perturbed KdV Equation for Convecting Fluids

With the purpose of introducing a good example of a nonintegrable system, this section
presents the underlying physical process described by the perturbed Korteveg de Vries
(PKdV) equation for convecting fluids. The proposed equation consists basically of a PDE
including dissipative and nonlinear terms simultaneously. Our interest about the analytical
study of this system was motivated after the work by Garazo and Velarde [1] who found,
by means of numerical techniques, soliton–like structures built in the equation. Therefore
– although it is not a new result – we found very interesting to follow the derivation
of the equation from first principles in order to understand the meaning of the different
parameters involved which, as will be seen in the following sections, play a very important
role in the integrability of the system and then in the form of its (particular) solutions.
For these reasons and relying mainly on the previous work by Aspe and Depassier [2], an
step-by-step derivation of the PKdV equation (23) is deduced†. Finally, and for the sake
of simplifying its further manipulation, a new rescaling of variables is introduced, leading
to the final form (24) [4, 5].

Let us consider in a 2-dimensional geometry (x, z) a fluid layer of thickness d opened to
air, subjected to a vertical temperature gradient ∇T and supporting a gravitational field
~g = −g~k. The properties µ (viscosity), k (thermal diffusity) and α (coefficient of thermal
expansion) are supposed constant throughout the volume of fluid. Let F represent the
prescribed normal heat flux over the free surface, k the thermal conductivity of the fluid
and ρ0, T0, pa some reference values for density, temperature and pressure, chosen as the
values of these variables at z = d in the static state of the fluid ρs(z), Ts(z), ps(z). From all
the characteristic parameters, we can adopt a new system of units given by [M ] = ρ0d

3;

[L] = d; [T ] = d2

k ; [Θ] = Fd
k and then, three dimensionless quantities involved in the

problem can be constructed:

σ =
µ

ρ0k
(Prandtl Number),

R =
ρ0gαFd4

kκµ
(Rayleigh Number),

G =
gd3ρ0

2

µ2
(Galileo Number).

†Even through the present derivation is initially due to H.Aspe and M.C.Depassier [2], there is a number
of references in the literature in which this derivation is presented. See, for instance, [1] or [3].
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With these considerations, the dimensionless Navier-Stokes equations governing the
problem read (here the subscripts denote derivatives)[6]:

ux + wz = 0, (1)

ut + uux + wuz = −px + σ (uxx + uzz) , (2)

wt + uwx + wwz = −pz + σ (wxx + wzz) + σR (T − Ts) , (3)

Tt + uTx + wTz = Txx + Tzz. (4)

Furthemore, the fluid is supposed to be bounded from below by a stress-free plane
surface maintained at constant temperature Tb, and above by a free surface which is
deformed as the fluid moves on. Let z = 1 + ε2ν(x, t) denote its position. The boundary
(dimensionless) conditions are then [7]:

on z = 0:
w = uz = 0, (5)

T = Tb, (6)

on z = 1 + ε2ν(x, t):
w = ηt + uηx, (7)

p− pa =
2σ

N2

[
wz + uxηx

2 − ηx(uz + wx)
]
, (8)

(1− ηx
2)(uz + wx) + 2ηx(wz − ux) = 0, (9)

~n · ∇T = −1, (10)

where N = (1 + ηx
2)1/2 and ~n = (−ηx, 0, 1)/N is the unitary vector normal to the free

surface. Therefore, the problem to be solved is described by equations (1) to (10).
Now, we shall introduce a small perturbation to the static solution of the problem.

To take account of the slow variation of the waveform, a scale transformation of the
independent variables, given by

ξ = εα(x− ct); τ = εα+1t,

is set. As Su and Gardner demonstrated [8], for the final equation to represent a nondissi-
pative system, the value of α must be necessarily 1/2. Then, redefining the small parameter
(ε1/2 → ε), a simple analysis of dimensions in the system (1)-(10) leads to the following
scaling:

u(x, z, t) = ε2û(ξ, z, t); w(x, z, t) = ε3ŵ(ξ, z, τ); η(x, t) = ε2η̂(ξ, τ);
p(x, z, t) = ps(z) + ε2p̂(ξ, z, τ); T (x, z, t) = Ts(z) + ε3Θ̂(ξ, z, τ).

After the scaling, the nondimensional equations become (dropping theˆfrom all vari-
ables):

uξ + wz = 0, (11)

−εcuξ + ε3uτ + ε3uuξ + ε3wuz = −εpξ + ε2σuξξ + σuzz, (12)

−ε2cwξ + ε4wτ + ε4uwξ + ε4wwz = −pz + ε3σwξξ + εσwzz + εσRΘ, (13)
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−εcΘξ + ε3Θτ + ε3uθξ + ε3wΘz − w = Θzz + ε2Θξξ, (14)

and the scaled boundary conditions:
on z = 0:

w = uz = Θ = 0, (15)

on z = 1 + ε2η(x, t):
w = −cηξ + ε2ητ + ε2uηξ, (16)

uz = −ε2wξ + ε6(uz + ε2wξ)ηξ
2 + 2ε4ηξ(uξ − wz), (17)

Θz = ε4ηξ + ε−3[1− (1 + ε6ηξ
2)1/2], (18)

p = Gσ2η + ε2
σR

2
η2 +

2σε

N2
(wz − ε2ηξuz − ε4ηξwξ + ε6uξηξ

2). (19)

Regarding ε as an ordering parameter, we now look for an asymptotic solution to
equations (11)-(19) of the form

u = u0 + εu1 + ε2u2 + · · ·

w = w0 + εw1 + ε2w2 + · · ·

η = η0 + εη1 + ε2η2 + · · ·

p = p0 + εp1 + ε2p2 + · · ·

Θ = Θ0 + εΘ1 + ε2Θ2 + · · ·

Besides, as the Rayleigh number R is slightly above its critical value, we shall set
R = Rc + ε2R2. Under these conditions, every order in ε gives a system of inhomogeneous
linear equations to be solved sequentially. For the sake of brevity, we here only will
comment briefly the results.

In the first two leading orders the velocity component u(ξ, τ) is independent of z; its
solution is then given by u(ξ, τ) = f(ξ, τ)+ εg(ξ, τ), where f and g are arbitrary functions
whose evolution equation has to be determined by applying the solubility conditions at
the appropriate order. These conditions are systematically found by putting Eq.(12) into
the correspondent order in ε . At orders ε and ε2, it is easily found that the solubility
conditions determine the values of the critical phase speed c2 = σ2G and the critical
Rayleigh number Rc = 30, respectively. Taking account of those values and the expressions
for all the variables in the preceding orders, the solubility condition of the approximation
at order ε3 shows that f obeys the KdV equation

fτ + λ1ffξ + λ2fξξξ = 0, (20)

where

λ1 =
3

2σG
(10 + σG); λ2 =

σ
√

G

2

(
1
3

+
34σ

21

)
.

Finally, the evolution equation for g is found by applying the solubility condition at
order ε4, which leads to:

gτ + λ1(fg)ξ + λ2gξξξ +
σR2

15
fξξ + λ̃3fξξξξ + λ̃4(ffξ)ξ = 0, (21)
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with the coefficients λ̃3 and λ̃4 given by

λ̃3 = σ

(
68σ2G + 717

2079

)
; λ̃4 =

8√
G

.

Combining equations (20) and (21) and taking account of their correspondent order in
ε, we have

(f + εg)τ + λ1[ffξ + ε(fg)ξ] + λ2(f + εg)ξξξ + ε

[
σR2

15
fξξ + λ̃3fξξξξ + λ̃4(ffξ)ξ

]
= 0, (22)

so that the equation for u(ξ, τ) at the correct order in ε finally yields

uτ + λ1uuξ + λ2uξξξ + ε

[
σR2

15
uξξ + λ̃3uξξξξ + λ̃4(uuξ)ξ

]
. (23)

Then, the evolution of the surface displacement is governed by a perturbed KdV equa-
tion in such a way that the excess of the Rayleigh number above its critical value and the
presence of nonlinear terms have a destabilizing effect which is balanced by diffusion.

In order to decrease the number of independent coupling constants in Eq.(23), let
λ3 = ελ̃3, λ4 = ελ̃4 and λ5 = εσR2

15 . Making use of these new parameters and the
rescaling

x = ξ +
λ1λ5

λ4
τ ; t = λ3τ ; u(ξ, τ) =

6λ3

λ4
û(x, t)− λ5

λ4
.

Eq.(23) can be transformed into

ût + λ(ûxxx + 6ûûx) + 5βûûx + (ûxxx + 6ûûx)x = 0,

where
λ =

λ2

λ3
; β =

6
5

(
λ1

λ4
− λ2

λ3

)
.

Eq.(24) constitutes the final form of the PKdV that shall be analyzed henceforth.

2. Symmetries

As the initial step in the search for solutions of the PKdV equation, in this section an ex-
haustive analysis of its symmetries is presented, including nonclassical Bluman and Cole
symmetries and contact transformations†. As a result of the calculations, the Galilean
invariance of the equation is shown and the related similarity reduction is obtained. In
the foregoing analysis is found that the Galilean is the only invariance exhibited by the
equation, at least until the contact transformations stage. The Lie–Bäcklund symme-
tries are not considered in the present paper. For further information about this kind of
transformations see [9, 10].

†As is argued below, the calculation of the classical (Lie) symmetries is spurious in the present example.
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2.1. Nonclassical symmetries

Given a partial differential equation H(xi, u, u,i, · · ·) = 0, where u = u(xi) and ,k = ∂
∂xk ,

the nonclassical procedure (NCM) to determine its symmetries [9, 10] consists in finding
those infinitesimal transformations of the form

x̃n = x̃n(xi, u), ũn = ũn(xi, u), (25)

with the generator

X = ξn(xi, u)
∂

∂xn
+ η(xi, u)

∂

∂u
, (26)

which leaves invariant the equation and verifies the so–called invariant surface condition
(Eq.(28)). That is, those transformations, for which

XH(xi, u, u,i, · · ·) = 0 (27)

and
η(xi, u) = ξn(xi, u)u,n, (28)

hold. In other words, the nonclassical procedure determines transformations of the form
(25) that leave invariant not only the given equation but also certain boundary conditions
imposed through Eq.(28).

In the case of the perturbed KdV equation

u,t + λ(u,xxx + 6uu,x) + 5βuu,x + (u,xxx + 6uu,x),x = 0, (29)

we deal with two independent variables, so xi = x, t. Then, it is easy to realize that two
different cases arise from Eq.(28). Firstly assume ξt 6= 0, therefore we can set without loss
of generality ξt = 1. A similar simplification can be established for the case ξt = 0, where
ξx = 1 is supposed.

Introducing these simplifications, Eq.(28) reads:

(Case I. ξt = 1) η(x, t, u) = u,t + ξx(x, t, u)u,x. (30.1)

(Case II. ξt = 0, ξx = 1) η(x, t) = u,x. (30.2)

Then, the nonclassical method leads to two different kinds of transformations de-
pending on whether ξt 6= 0 or ξt = 0. For the considered equation we have found the
expressions of the infinitesimal transformations related to ξt 6= 0 and the differential equa-
tion corresponding to ξt = 0 which has to be verified by η. As this new equation is more
complicated than the initial one (29), the absence of this kind of symmetries is shown
through the Singular Manifold Method.

Case I. ξt = 1, ξx ≡ ξ. First of all, we have to find out how do the u,t, u,x, u,xx, u,xxx

and u,xxxx transform. For the symmetry condition to make sense, it is obvious that the
transformation laws must be of the form

ũ,t =
∂ũ

∂t̃
, ũ,x =

∂ũ

∂x̃
, ũ,xx =

∂ũ,x

∂x̃
, ũ,xxx =

∂ũ,xx

∂x̃
, ũ,xxxx =

∂ũ,xxx

∂x̃
. (31)
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In terms of the infinitesimal generator X, these transformation rules mean that the ηt,
ηx, ηxx, ηxxx and ηxxxx are the extensions of ξ and η. Therefore, they have to obey

ηi =
Dη

Dxi
− u,x

Dξ

Dxi
, i = x, t, (32.1)

ηxx =
Dηx

Dx
− u,xx

Dξ

Dx
, (32.2)

ηxxx =
Dηxx

Dx
− u,xxx

Dξ

Dx
, (32.3)

ηxxxx =
Dηxxx

Dx
− u,xxxx

Dξ

Dx
, (32.4)

where
D

Dxk
=

∂

∂xk
+ u,k

∂

∂u
.

Once the extensions are known, we have to use the field equation (29) and the invariant
surface condition (30.1) to eliminate both u,t and u,xxxx from the expressions (32). In our
case the conditions are

u,t = η − ξu,x (33.1)

and
u,xxxx = −η + [ξ − (6λ + 5β)u]u,x − 6u,x

2 − 6uu,xx − λu,xxx. (33.2)

After substituting Eq.(33) into the expressions (32), we have to determine the functions
ξ and η from the symmetry condition (27), which leads to

ηt + (5β + 6λ)(ηux + ηxu) + 12ηxu,x + 6(ηu,xx + ηxxu) + ληxxx + ηxxxx = 0. (34)

As both ξ and η do not depend on the derivatives, terms with the same derivative (or
a product of derivatives) of u can be equated to zero independently. Setting the coefficient
of u,xx, u,xxx equal to zero, we find

ξ,u = 0, (35)

and equating to zero the coefficient of u,xu,xxx, we see that

η,uu = 0. (36)

Continuing to equate to zero, successively, the coefficients of u,xxx, u,xx, · · ·, and em-
ploying Eqs.(35) and (36), we are led to the relations

4η,xu − 6ξ,xx + λξ,x = 0, (37)

6η,xxu − 4ξ,xxx + λ(3η,xu − 3ξ,xx) + 6η + 12uξ,x = 0, (38)

4η,xxxu − ξ,xxxx − 4ξξ,x + 3λη,xxu − λξ,xxx + 12η,x+
(6λ + 5β)η − ξ,t + 3(6λ + 5β)uξ,x + 12uη,xu − 6uξ,xx = 0,

(39)

η,xxxx + 4ηξ,x + λη,xxx + η,t + 6uη,xx + (6λ + 5β)uη,x = 0. (40)

Now, as Eq.(36) implies that

η(x, t, u) = Γ(x, t)u + Θ(x, t), (41)
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all functions in Eq.(38) are independent of u, so that equating to zero independently those
terms in which u appears and those with no dependence on u, we find

Γ(x, t) = −2ξ,x, (42)

Θ(x, t) =
1
3

(
8ξ,xxx +

9λ

2
ξ,xx

)
, (43)

and setting Eq.(42) into Eq.(37), we are led to

ξ,xx −
λ

14
ξ,x = 0. (44)

Now, putting Eqs.(41) and (42) into Eq.(39) gives

−9ξ,xxxx − 4ξξ,x − 7λξ,xxx + 12Θ,x + (6λ + 5β)Θ− ξ,t = 0, (45)

(6λ + 5β)ξ,x − 54ξ,xx = 0. (46)

Comparing Eqs.(44) and (46) is straightforward to see that both equations are simultane-
ously verify if

7β + 3λ = 0. (47)

On the other hand, putting Eqs.(41) and (42) into Eq.(40) and equating to zero terms in
u2 lead to

ξ,xxx +
5β + 6λ

6
ξ,xx = 0. (48)

So that, comparing with Eq.(44), the relations are satisfied if

7β + 9λ = 0. (49)

That is, for the three equations (44), (46) and (48) to be verified simultaneously, the
parameters λ and β must vanish. This is a very restrictive condition, as we suppose
them to be free. For this reason, this solution is meaningless and, in order to satisfy the
equations, the condition to impose is

ξ,x = 0. (50)

Now, from Eqs.(42), (43) and (45) we see that

Γ(x, t) = 0, Θ(x, t) = 0, ξ,t = 0. (51)

So that, the solution of the system is

ξ = const, η = 0. (52)

And then, the symmetry is generated by functions

ξx = x0, ξt = t0, η = 0. (53)

Consequently, for ξt 6= 0, the nonclassical symmetries of the PKdV equation are re-
duced to the Galilean transformations generated by

X = x0
∂

∂x
+ t0

∂

∂t
. (54)
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The Galilean invariance of the equation demonstrated following the nonclassical pro-
cedure can be extended to the (classical) Lie case, as the former involves less restrictive
conditions than the Lie method. In other words, the number of nonclassical symmetries
is reduced enough as to assure that the classical method will not give other symmetries
than the Galilean transformations.

Case II. ξt = 0, ξx ≡ 1. Now, from Eq.(30.2) we can set

u,xxx = η,xx + 2ηη,xu + ηη,u
2 + η2η,uu, (55.1)

u,xx = η,x + ηη,u. (55.2)

If Eqs.(55) are substituted into the expressions (32) so that the x–derivatives are pulled
out, and the field equation (29) is used in order to eliminate the t–derivative, after the
application of the symmetry condition (35) one finds a single equation that has to be
verified by the function η:

η,t + (6λ + 5β)uη,x + 6uη,xx + λη,xxx + η,xxxx+
η[(6λ + 5β)η + 12η,x + 12uη,xu + 3λη,xxu + 4η,xxxu]+
η2(6η,u + 6uη,uu + 3λη,xuu + 6η,xxuu) + η3(λη,uuu + 4η,xuuu)+
η4η,uuuu + (η,x + ηη,u)(6η + 3λη,xu + 6η,xxu)+
η(η,x + ηη,u)(3λη,uu + 12η,xuu) + 6η,uuuη2(η,x + ηη,u)+
3η,uu(η,x

2 + η2η,u
2 + 2ηη,xη,u) + 4η,xu(η,xx + 2ηη,xu + ηη,u

2 + η2η,uu)+
4ηη,uu(η,xx + 2ηη,xu + ηη,u

2 + η2η,uu) = 0.

(56)

In any case, the resulting equation is much more complicated than the initial PDE and
then trying to obtain the symmetries of Eq.(29) from it has no sense. In any case, there is
a procedure that can be extended to any problem which gives full information about the
nonclassical symmetries available for a given equation [4]. Estivez and Gordoa proposed
a connection between nonclassical symmetries and the Singular Manifold Method (SMM)
[11, 12, 13]. Their proposal relies on the idea that all possible solutions obtained through
the NCM can be also derived by means of the SMM, and then both SMM and NCM are
connected by those solutions.

For a given equation
H(x, t, u, ux, ut, . . .) = 0, (57)

and according to the generalization of the Painlevé analysis for PDEs due to Weiss, Tabor
and Carnevale [14], we first impose the solution of the equation to verify the Painlevé
Property (PP), that is

u(x, t) =
∞∑

j=0

uj(x, t)[Φ(x, t)]j−α, (58)

where Φ is an arbitrary analytical function and an integer positive number α is called
leading index. Now we shall pay attention to those solutions for which the former expansion
takes the special form (SMM):

u(x, t) =
α∑

j=0

uj(x, t)[Φ(x, t)]j−α, (59)
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where now Φ is no more arbitrary, but a function called singular manifold which is fixed
by means of the quantities

w =
Φt

Φx
, (60.1)

ν =
Φxx

Φx
, (60.2)

s = νx −
ν2

2
, (60.3)

and the relations among them, due to the compatibility condition Φxt = Φtx:

νt = wx + wν, (61.1)

st = wxxx + 2swx + sxw. (61.2)

This set constitutes the so–called singular manifold equations. The quantities w and
s are invariant under homographic transformations but ν is not. This point has a crucial
importance in what follows. Note that substitution of (59) into (57) allows us to obtain
the expressions for uj in terms of w, s and ν. The auto-Bäcklund transformation [15]
related to fact that uα is also a solution of (57) is also obtained. Therefore, the uα can be
written as functions of the quantities defined in (60), that is

u = u(ν, w, s). (62)

Now, keeping in mind the form of the invariant surface condition (28), the connection
between both techniques arises writing out the expressions for ux and ut from the solution
defined by (62). The dependence of u on ν is very important here, as the Painlevé Property
is invariant under homographic transformations. That is, to preserve the invariance of the
PP, the singular manifold Φ should appear in (29) only as a function of the homographic
invariants w and s, so that the dependence on ν must be pulled out from the expressions
too. This condition will allow us to know whether it is possible the existence of nonclassical
symmetries with ξt = 0.

The Painlevé analysis of equation (29) is fully described in [4, 5]. As the particularities
of the calculations lay out of the scope of the present paper, we here only detail the results
of interest for the purpose of determining the nonclassical symmetries. Once the truncation
ansatz (59) is incorporated into Eq.(29), and the quantities involved are expressed in terms
of w and s, the solution u takes the form

u = u2 + 2
Φx

Φ

(
ν − β

6

)
− 2

(
Φx

Φ

)2

, (63)

where u2 is a particular solution of Eq.(29). The former equation constitutes an auto-
Bäcklund transformation between two solutions. The truncated solutions verifies two
additional conditions (singular manifold equations)

(u2)t − w(u2)x = 0, (64.1)

wx = 0. (64.2)
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From Eqs.(63) and (64), given a solution of Eq.(29), its derivatives verify the relations

ux = (u2)x + 2
Φx

Φ

[
νx + ν

(
ν − β

6

)]
− 2

(
Φx

Φ

)2 (
3ν − β

6

)
+ 4

(
Φx

Φ

)3

, (65.1)

ut = (u2)t + 2
Φx

Φ

[
νt + wν

(
ν − β

6

)]
− 2

(
Φx

Φ

)2 (
3wν − β

6
w

)
+ 4w

(
Φx

Φ

)3

. (65.2)

Now inserting Eqs.(65) into the invariant surface condition (28) and imposing the homo-
graphic invariance of solutions, it is straightforward to see that the only possible values
for the infinitesimal generators ξx, ξt and η are

ξx = −w; ξt = 1; η = 0. (66)

That is, the only nonclassical symmetry exhibited by the truncated solutions is the Galilean
invariance with ξt = 1 and there are no possible symmetries with ξt = 0. One still may
argue that there can be other solutions different from those obtained by means of the
SMM, exhibiting symmetries with ξt = 0, but all the equations studied up to now have
shown the direct correspondence between the nonclassical method and the SMM [4].

2.2. Contact symmetries

As is well known [9], a set of transformations in the space of variables (xi, u, u,i),

x̃n = x̃n(xi, u, u,i), ũ = ũ(xi, u, u,i), ũ,n = ũ,n(xi, u, u,i), (67)

is called a set of contact transformations if they satisfy the contact condition that the
transformed derivatives ũ,n are extensions to the derivatives of the transformations of xn

and u, that is, if

ũ,n =
∂ũ

∂x̃n
(68)

holds. In terms of the infinitesimal generator

X = ξn(xi, u, u,i)
∂

∂xn
+ η(xi, u, u,i)

∂

∂u
+ ηn(xi, u, u,i)

∂

∂u,n
, (69)

this condition means that the ηi are extensions of ξn and η. Therefore, they have to obey

ηi =
Dη

Dxi
− u,n

Dξn

Dxi
, (70)

where
D

Dxi
=

∂

∂xi
+ u,n

∂

∂u
+ u,ik

∂

∂u,k
. (71)

A contact transformation with the generator Xc will be called a symmetry of a partial
differential equation H(xi, u, u,i, · · ·) = 0 if

XcH(xi, u, u,i, · · ·) ≡ 0 (72)

holds.
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The functions η, ξn and ηi are best given in terms of a generating function

Ω(xi, u, ui) = u,nξn − η, (73)

according to

ξn =
∂Ω
∂u,n

, η = ui
∂Ω
∂u,i

, ηi = −
(

u,i
∂Ω
∂u

+
∂Ω
∂xi

)
. (74)

If Ω is linear in the derivatives u,i, then the transformation (67) is an extended point
transformation. In order to apply this framework to the PKdV equation (29), we have
first to determine the expressions of ηik, ηikr and ηikrs in terms of Ω according to the
recurrence rules (74), being understood that now the total derivative operator is given as
Eq.(71) shows. Once the prolongations are known, the field equation (29) has to be used
to eliminate u,xxxx from the expressions and then determine the function Ω(xi, u, u,i) from
the symmetry condition (72).

In the present example the function Ω depends only on the first derivatives, so that
those terms in Eq.(29) depending upon the higher order derivatives can be equated to zero
independently. For the sake of brevity we have introduced the notation u,x ≡ p, u,t ≡ q,
in the foregoing calculation.

Setting the coefficients of u,xtu,xxxt equal to zero, one finds

Ω,qq = 0, (75)

so that
Ω(x, t, u, p, q) = Ω1(x, t, u, p)q + Ω2(x, t, u, p) = 0, (76)

and equating to zero the coefficients of u,xxu,xxxt and u,xxxt yields to

Ω,pq = 0, (Ω1),x = 0, (Ω1),u = 0, (77)

which means Ω1 = Ω1(t). On the other hand, if the coefficient of u,xxx
2 is equated to zero,

we see that
Ω,pp = 0. (78)

This condition implies that the function Ω2 is linear on p and then, the whole function Ω
is linear in the derivatives p and q, which characterizes a point transformation.

Thus, if now we set to zero the other coefficients of u,xxu,xxx, u,xxx, u,xx, · · ·, it is
straightforward to find that the complete expression for Ω is

Ω = t0q + x0p, t0, x0 = const, (79)

and then, taking account of (74), one easily obtains the generating functions of the sym-
metry

ξx = x0, ξt = t0, η = 0. (80)

That is, all contact symmetries of the PKdV equation are point transformations related
to the Galilean invariance of the equation, shown before by the NCM.
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2.3. Similarity reductions†

The results of the preceding sections show that, at least until the contact symmetries
stage, the symmetries of the PKdV equation are reduced to the galilean transformations.
If one allows the transformation to depend upon higher order derivatives (Lie-Bäcklund
case) [9, 10], other kind of symmetries may be found, although the nonintegral nature of
the equation, demonstrated through the Painlevé analysis [4], indicates that the number of
symmetries cannot be very high. Nevertheless, the Galilean invariance leads to a similarity
reduction (a travelling wave reduction) given by the relation

z = x0 + ν0t, (81)

where z is the new independent variable and ν0 is in principle an arbitrary constant. The
similarity reduction transforms the initial partial differential equation into an ordinary
differential equation (ODE) given by

ν0u
′ + λ(u′′′ + 6uu′) + (u′′′ + 6uu′)′ + 5βuu′ = 0, (82)

where the prime means
d

dz
and α0 is the integration constant. This new equation can be

integrated once, yielding the final equation

u′′′ + λu′′ +
1
2
(5β + 6λ)u2 + 6uu′ + ν0u + α0 = 0. (83)

which will be analyzed henceforth in order to obtain travelling wave solutions of the initial
PDE (29).

3. Painlevé analysis of the similarity reduction

The nonintegral behaviour of the PKdV equation (29) implies that the related ordinary
differential equation (83) does not have the Painlevé Property for any value of the free
parameters λ, β, ν0, and α0. Nevertheless, the application of the Conditional Painlevé
Property (CPP) method leads to a variety of solutions which can be interpreted as solutions
of (29) by means of the transformation (81). In the following sections, this technique is
fully described showing that, once one finds the similarity reductions (in this case just one)
of a given partial differential equation, the CPP method gives the conditions to impose
over the parameters to assure the integrability of those reductions.

Given an ordinary differential equation, it is said to possess the Painlevé Property
(PP) if its solutions can be written in the form of a Laurent series expanded about its
movable singularities (ARS algorithm [18, 19]), that is

u(z) =
∞∑

j=0

aj(z − z0)j−α, (84)

where is α a positive integer and aj(j ∈ N) are real numbers. That is, for the Painlevé
Property to be verified, the solutions of the equation have no movable singularities other
than poles.

†By similarity reduction must be understood all those ODE derived from a given PDE by means of
symmetry transformations. See, for instance, [16, 17].
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The coefficients aj and the leading index α are readily found by substituting the ansatz
(84) into the equation. In particular, taking account of the dominant terms in (83) leads
to

α = 2, (85.1)

a0 = −2. (85.2)

So that, the equation becomes

∞∑
j=0

Aj(z − z0)j−5 + α0 = 0, (86)

where
Aj = (j − 2)(j − 3)(j − 4)aj + λ(j − 3)(j − 4)aj−1+
ν0aj−3 + 6λ+5β

2

∑j−1
n=0 aj−n−1an + 6

∑j
n=0(n− 2)aj−nan.

(87)

Since z is the independent variable of the expansion, for equation (86) to be satisfied,
each order in j must vanish independently. In this sense, (87) can be regarded as a
recurrence rule which allows us to determine aj as a function of u0, · · · , uj−1 and the
parameters. For j = 5, the contribution of α0 must be kept in mind in order to cancel
with A5.

On the other hand, as the coefficient of aj (with j 6= 5) in (87) reads

(j + 1)(j − 4)(j − 6)aj , (88)

for j = −1, 4 and 6 the equation (83) shows resonances and, if it possesses the Painlevé
Property, the coefficients a4 and a6 must be arbitrary. The resonance in j = −1 can be
interpreted taking account of the arbitrariness in choosing z0. That is, to check whether
the equation possesses or not the Painlevé Property, one has to determine the coefficients
a0, a1, a2, a3 and a5, and prove that the expressions for j = 4 and 6 are identically satisfied.
Under these conditions, the equation is said to have the PP.

For the sake of brevity, we shall avoid details of the calculations giving only the final
expressions for the coefficients, which read:

a0 = −2, (89.1)

a1 = −β

3
, (89.2)

a2 = − β

36
(5α + 4β), (89.3)

6a3 =

[
ν0 − w0 −

(
β

6

)3
]

, (89.4)

6a5 = α0 − 2a4(5λ + 6β)− β
18(ν0 − w0)(11λ + 9β)+

1
6

(
β
6

)4
(17λ + 14β)− 1

63

(
β
6

)2
(5λ + 4β)(6λ + 5β)(15λ + 13β),

(89.5)

where

w0 =
5β

6

(
(6λ + 5β)

6

)2

. (90)



INTEGRABILITY OF THE PERTURBED KdV EQUATION 15

Equating to zero the coefficients F4 and F6 gives:

(λ + β)(ν0 − w0) = 0, (91.1)

5(3λ + 5β)(2λ + 3β)a4 − α0(3λ + 7β)+
(ν0 − w0)2 + (ν0 − w0)M(λ, β) + N(λ, β) = 0,

(91.2)

with
M(λ, β) =

β

36

[
2(3λ + 7β)(11λ + 9β) +

β

6
(3λ + β)

]
, (92.1)

N(λ, β) = −1
6

(
β
6

)5
(3λ + 2β)− 1

36

(
β
6

)4
(3λ + 7β)(17λ + 14β)+

1
216

(
β
6

)2
(3λ + 7β)(5λ + 4β)(6λ + 5β)(15λ + 13β).

(92.2)

It is then obvious that conditions (91) are not identically satisfied for all possible values
of the free parameters. Therefore, we can conclude stating that equation (83) does not
possess the Painlevé Property for any value of λ, β, ν0 and α0 as was supposed after the
analysis of the initial PDE (29). Nevertheless, these conditions provide full information
about the particular solutions of Eq.(83) and then, of Eq.(29). As can be readily seen in
the following section, by imposing conditions (91), one finds a classification of solutions
according to the number of independent constants appearing in the specific ODE related
to each solution. Then, we now seek for these particular values of the free parameters (i.e.,
the physical conditions), for which equation (83) verifies the Painlevé Condition.

4. Finding solutions: conditional Painlevé property

The above analysis shows that Eq.(83) represents a nonintegral ODE when all the four
parameters λ, β, ν0 and α0 are free. Furthermore, as the equation is of the third order
in the z–derivative, z0, a4 and a6 constitute a complete set of arbitrary constants which
should appear in the general solution of the equation if integrable. As the former analysis
has shown the nonintegral behaviour of the equation, there are no solutions with three
arbitrary constants involving the four free parameters, although by imposing conditions
(91), and then, by imposing certain fixed relations among the parameters, it is possible to
find out solutions with the specified number of arbitrary constants. Needless to say that
these solutions, although general, correspond to very special forms of Eq.(83) and then,
the physical processes described by their related solutions of Eq. (29) have a different
significance than those described in the fist part of the paper. Through the procedure
of imposing conditions over the parameters, we have found the following classification of
solutions:

4.1. CASE I
By choosing λ = β = 0 in (91.1) and ν0 = 0 in (91.2), both conditions are identically

satisfied. Equation (83) is then transformed into

u′′′ + 6uu′ + α0 = 0, (93)

with α free. Integrating once, this equation reads

u′′ + 3u2 + α0z + γ0 = 0, (94)
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which, by means of the scaling
u = −2ω, (95)

is transformed into
ω′′ = 6ω2 − α0z + γ0. (96)

The latter equation defines the First Painlevé Transcendent (PI) [20]. Then, the so-
lutions of (83) with λ = β = 0 are given in terms of the transcendental function PI, and
so are the solutions of the PKdV equation if the parameters are subjected to such a re-
striction. Note that the condition imposed here over the parameters is the same neglected
previously in the symmetry analysis of the initial PDE (29) because of its restrictive sig-
nificance, since the condition means that the physical constants appearing in (29) have to
verify the relation λ1 = λ2 = 0.

4.2. CASE II
Now, Eqs.(91) are satisfied by choosing ν0 = w0 in (91.1) and imposing the restrictions

3λ + 5β = 0, (97.1)

−α0(3λ + 7β) + N(λ, β) = 0, (97.2)

in (91.2). These conditions fix the values of the phase speed ν0 and the integration constant
α0 in terms of one of the parameters λ or β. For instance, let the latter to be free, then

ν0 =
(

5β

6

)3

, (98)

and Eq.(83) finally reads:

u′′′ − 5β

3
u′′ +

(
5β

6

)3

u− 5β

2
u2 + 6uu′ + α0 = 0. (99)

As is shown in the following section, this equation can be reduced again in terms of
the transcendental function PI.

4.3. CASE III
Lastly, let ν0 = w0 in (91.1) and

2λ + 3β = 0, (100.1)

−α0(3λ + 7β) + N(λ, β) = 0, (100.2)

in (91.2). These restrictions lead to

ν0 = 10
(

β

3

)3

, (101)

u′′′ − 3β

2
u′′ +

10β3

27
u− 2βu2 + 6uu′ + α0 = 0, (102)

with β free and α0 = α0(β) given by (100.2). Now, the resulting equation can be integrated
in terms of the Weierstrassian elliptic function ℘(z, g2, g3). Section 5 presents the details.
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These three cases constitute the only relations which lead to general solutions of Eq.
(83), although, as was mentioned before, the resulting equations (93), (99) and (102) do
not exactly describe the physical problem presented in section 1, but certain restrictions
of it. Then, if one tries to obtain analytical solutions of equation (83) with relevance to
the motion equation (29), the search for solutions must follow another point of view. In
this sense, note that the constant a4 can be fixed in terms of the parameters by means
of Eq.(91.2). Therefore, as a4 is no more arbitrary, the number of constants in Eq.(83) is
reduced to two and then there will be a subset of solutions satisfying the PP but related
to equations of the second order.

After these considerations, the next step consists in finding solutions of Eq.(83) taking
in mind special values for the parameters involved. Note that the Painlevé analysis has
not given us any specific solution but rather provides full information about where we
have to seek for them in the parameter space.

5. Particular solutions of the PKdV equation

In order to simplify the form of Eq.(83), consider the following general transformation
[21]:

u(z) = µ(z) + M(z)F [(y)] (103)

introducing this ansatz into Eq.(83), the following equation is obtained:

M(y′)3
. . .
F + 6M2y′FḞ +

[
λM(y′)2 + 3M ′(y′)2 + 3My′y′′

]
F̈+[

6µMy′ + λ(2M ′y′ + My′′) + 3M ′′y′ + 3M ′y′′ + My′′′
]
Ḟ+[

ν0M + 2kµM + 6(µM ′ + Mµ′) + λM ′′ + M ′′′
]
+

(kM2 + 6MM ′)F 2 + (α0 + ν0µ + kµ2 + 6µµ′ + λµ′′ + µ′′′) = 0

(104)

where the y–derivative is represented by a dot and k =
1
2
(5β + 6λ).

Now, consider the dominant terms (
...
F , FḞ ) in Eq.(104). For their coefficients to be

proportional, one has to choose M = (y′)2 so that both terms become:

(y′)5
d

dy
(F̈ + 3F 2). (105)

Following the same procedure, consider the next order terms (in F̈ , F 2). To simplify
the equation, these terms have to become into an expression proportional to F̈ + 3F 2,
after choosing the appropriate ansatz for the variables in Eq. (104). If one tries to do this,
the following expression is found:

(y′)4
[(

λ + 9
y′′

y′

)
+
(

k + 12
y′′

y′

)
F 2
]
, (106)

and then, the required proportionality between the expressions arises by imposing the
coefficients to verify

k + 12
y′′

y′
= 3λ + 27

y′′

y′
. (107)
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That is, the transformed variable y has to satisfy the second order linear equation

y′′ − β

6
y′ = 0. (108)

This equation leads to two kinds of solutions depending on the value of β:

(β = 0) y = b0z, (109.1)

(β 6= 0) y = b0 exp
(

β

6
z

)
+ b1. (109.2)

Now, with these ansatzë and substituting M in terms of y, Eq.(104) becomes

d
dy (F̈ + 3F 2) + 1

2y′ (2λ + 3β)(F̈ + 3F 2) + 1
(y′)2

(
6µ + 5λβ

6 + 19
36β2

)
Ḟ+

1
(y′)3

[
ν0 + (6λ + 7β)µ + 6µ′ + 4λ

(
β
6

)2
+ 8

(
β
6

)3
]
F+

1
(y′)5 (α0 + ν0µ + kµ2 + 6µµ′ + λµ′′ + µ′′′) = 0.

(110)

The integration of the former equation will lead us to particular solutions of the ODE
(83). Note that an arbitrary function which will be fixed in each case by convenience
and the conditions to impose over Eq.(110) in order to simplify its form must be chosen
among the cases analyzed in section 4, which, as was shown there, are the only leading to
integrable equations of the third order. The selection of parameters leading to integrable
second order equations is also analyzed henceforth.

5.1. CASE β = 0:
Now, by choosing b0 in (109.1) and µ, the ansatz (103) reduces to u ≡ F and equation
(110) reads:

(u′′ + 3u2)′ + λ(u′′ + 3u2) + ν0 + α0 = 0. (111)

As was argued in section 4 (case I), if β = 0 then necessarily λ = ν0 = 0 in order to verify
relations (91). This condition leads straightforward to

(u′′ + 3u2)′ + α0 = 0, (112)

whose solutions are PI as was shown before.
The solutions of the former equation contain three independent constants, although the

conditions imposed over the parameters are severely restrictive. Another way to obtain
solutions from equation (83) consists in imposing ν0 = w0 in Eq.(91.1), which in the
present case implies ν0 = 0, and choosing a4 = a4(λ, α0) in such a way that condition
(91.2) was identically satisfied.

Then, in order to linearize (111), let

G = u′′ + 3u2, (113)

so that G verifies
G′ + λG + α0 = 0, (114)

whose solution is
G(z) = γ0 exp(−λz)− α0

λ
, (115)
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where γ0 is an arbitrary constant. The equation for u then becomes:

u′′ + 3u2 +
α0

λ
= γ0 exp(−λz). (116)

This equation is integrable only if γ0 = 0 [21], in which case can be reduced in terms of
elliptic functions by means of the scaling defined by Eq.(95). Introducing such a transfor-
mation, the equation finally reads:

ω′′ = 6ω2 − α0

λ
, (117)

whose solution is the Weierstrassian elliptic function ℘(z − z0, g2, g3), where z0, g3 are
arbitrary constants and g2 = 2α

λ . Now, introducing the parameters e1, e2 and e3 through

e1 + e2 + e3 = 0, (118.1)

−4(e1e2 + e1e3 + e2e3) = g2, (118.2)

4e1e2e3 = g3, (118.3)

and taking account of the usual relations between ℘ and the Jacobian elliptic functions
[20], the solution of (117) can be transformed into:

ω(z) = e2 − k2k0
2cn2[k0(z − z0)], (119)

where k0
2 ≡ e1 − e3 is an arbitrary constant and the elliptic modulus k is defined by

k2 =
e2 − e3

e1 − e3
. (120)

Furthermore, the solution (119) can be expressed in terms of hyperbolic functions by
taking the limit k = 1; according to expressions (118) and (120), this limit implies:

e1 = e2 = −e3

2
=

k0
2

3
, (121)

in which case, solution (119) becomes

ω(z) = −2k0
2

3
+ k0

2 tanh2[k0(z − z0)] (122)

and the related (static) solution of the PKdV equation (29) finally reads:

u(t, x) =
4k0

2

3
− 2k0

2 tanh2[k0(x− x0)], (123)

where both x0, k0 are arbitrary constants. Note that this solution describes the evolution
of waves in the case that the physical parameters in (29) verify λ1

λ4
= λ2

λ3
.

5.2. CASE β 6= 0:
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Now, let b0 ≡ 1, b1 ≡ 0 in (109.2), and µ′ ≡ 0. Furthermore, in order to continue the
simplification of (110), let the terms in (Ḟ , F ) be proportional to Ḟ + 2F

y . The condition
to impose is then:(

6
β

)2
[
12µ +

β

3

(
5γ +

19
6

β

)]
=
(

β

3

)3
[
v0 + (6γ + 7β)µ +

(
β

6

)2 (
4γ +

4
3
β

)]
, (124)

which fixes µ in terms of the constants involved in the problem as

µ =
(

β

6

)2

− v0

6γ + 5β
. (125)

Then, Eq.(110) reads:

d
dy (F̈ + 3F 2) + 3

β (2γ + 3β)(F̈ + 3F 2)−

6
6γ + 5β

(
6
β

)2
v0 − w0

y2

(
Ḟ + 2F

y

)
+(

6
β

)5
1
y5

[
α0 + 6γ + 5β

2

(
β
6

)4

− v0
2

2(6γ + 5β)

]
= 0.

(126)

In order to verify (91) and according to the results of section 4 (cases II and III), let
v0 = w0 and α0 = α0(β) defined by Eqs.(97) and/or (100), which transforms the latter
equation into:

d

dy
(F̈ + 3F 2) +

3
β

(2γ + 3β)
1
y
(F̈ + 3F 2) = 0. (127)

Besides, to completely fulfil the condition (91.2), there is an additional relation that
has to be verified by parameters γ and β:

(3γ + 5β)(2γ + 3β) = 0. (128)

Then, depending on how is condition (128) verified, two different subcases, leading to very
different kinds of solutions, arise when is supposed.

First, assume 3γ+5β = 0 or, in terms of the physical parameters of the PKdV equation,
λ1
λ4

= λ2
2λ3

. Then Eq.(127) becomes:

d

dy
(F̈ + 3F 2)− 1

y
(F̈ + 3F 2) = 0. (129)

This equation constitutes the transformation of (99) through the ansatz (103). Redefining
variables in a way similar to (113), the equation can be integrated once giving:

F̈ + 3F 2 = γ0y, (130)

whose solutions are expressible in terms of PI as is shown in section 4 (case I).
On the other hand, suppose 2γ + 3β = 0 in (128). In such a case, Eq.(127) becomes:

d

dy
(F̈ + 3F 2) = 0, (131)
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and then, integrating once, the second order equation to be satisfied by F is

F̈ + 3F 2 = γ0, (132)

which by means of the scaling F = −2ω becomes:

ω̈ = 6ω2 + γ0, (133)

whose solution is given again in terms of the Weierstrassian elliptic function ℘ as:

ω(y) = ℘(y − y0,−2γ0, g3), (134)

where y0, γ0 and g3 are arbitrary constants. Redefining the free parameters as given by
Eq.(118), the solution (134) can be expressed in terms of the Jacobian elliptic function
cn(y | k) as:

ω(y) = e2 − k2γ2cn2[γ(y − y0)], (135)

where γ2 = e1 − e3 and the elliptic modulus k is defined by (120). A particular solution
of (131) can be obtained in terms of hyperbolic functions by taking the limit k = 1 in
(135). This implies that the constants have to be chosen, for example, as γ0 = −2

3 and

g3 = −
(
2
3
)2

. Besides, for the sake of simplicity, let y0 = 0. Then (135) becomes:

ω(y) = −2
3

+ tanh2 y, (136)

so that
F (y) =

4
3
− 2 tanh2 y, (137)

and, by means of (103), (109.2) and (125) the expression for u(z) is

u(z) =
β2

54

{
13
2

+ exp
(

β

3
z

)[
2− 3 tanh2

(
exp

(
β

6
z

))]}
, (138)

and the related solution of the PKdV equation reads:

u(t, x) =
β2

54

{
13
2

+ exp
(

β

3
(x + v0t)

)[
2− 3 tanh2

(
exp

(
β

6
(x + v0t)

))]}
, (139)

where v0 = 10
(

β
3

)3

and β is free, so that the solution represents the evolution of waves

when the physical parameters in (29) are subjected to

λ1

λ4
=

4
9

λ2

λ3
. (140)

As in the case β = 0, it is possible to obtain solutions with β 6= 0 by imposing v0 = w0

and choosing a4 = a4(λ, α0) in order to verify (91). In such a case, there is no restriction
over the parameters λ and β. Then, Eq.(127) has to be integrated without taking into
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consideration the condition (128) and the solution obtained will be given in terms of two
arbitrary constants. Therefore, let the variable F be redefined as

G = F̈ + 3F 2, (141)

so that Eq.(127) is transformed into the linear ODE

Ġ +
3
β

(2λ + 3β)
G

y
= 0, (142)

and then
G(y) = γ0y

− 3
β

(2λ+3β)
, (143)

γ0 being arbitrary. The equation for F becomes:

F̈ + 3F 2 = γ0y
− 3

β
(2λ+3β)

, (144)

which again is integrable only if γ0 = 0 [21]. Introducing the usual scaling F = −2ω, the
former equation is transformed into

ω̈ = 6ω2, (145)

whose solution is the Weierstrassian elliptic function

ω(y) = ℘(y − y0, 0, g3), (146)

where y0 and g3 are the integration constants. In the particular case, in which these
constants are chosen as y0 = g3 = 0, the solution reads:

ω(y) =
1

(1 + y)2
, (147)

and then
F (y) = − 2

(1 + y)2
, (148)

so that, by means of (103), (109.2) and (125), the solution of (83) is

u(z) = − β

216
(30λ + 19β)− 1

2

(
β

6

)2
[
1 + tanh2

(
β

12
z

)]2

, (149)

and, finally, the travelling wave solution for (29) reads:

u(z) = − β

216
(30λ + 19β)− 1

2

(
β

6

)2
[
1 + tanh2

(
β

12
(x + v0t)

)]2

, (150)

where the phase velocity v0 is given by

v0 =
5β

6

(
6λ + 5β

6

)2

, (151)

and there are no restrictions over the physical parameters.
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Apart from the solutions presented throughout this paper, we do know the existence of
another one related to the condition λ = −β. This restriction can be used to verify (91.1),
together with the appropriate a4 = a4(λ, α0) in (91.2) so that there must be a second order
ODE related to a such solution. The connection between that second order ODE with (83)
is still unknown, although the specific form of the solution can be obtained following the
SMM as was shown by Estévez, Gordoa and the authors [4, 5]. The mentioned solution
reads:

u(t, x) = 1
6

(
8k0

2 + λ2

6

)
+ λk0

3 tanh[k0(x + v0t + x0)]− 2k0
2 tanh2[k0(x + v0t + x0)],

(152)
where k0, x0 are arbitrary constants and the phase velocity v0 is given by

v0 =
λ

6

(
4k0

2 − λ2

6

)
. (153)
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