
The Design of a Hardware Thread Manager for
a Polymorphic Multimedia Processor

Bowen Qian 1 , Tao Li1 and Ting Yang2

In the past few decades, with the rapid development of integrated circuit
technology, the design flow has all been improved. During the same period,
computer architecture has evolved from simple uni-processor, to superscalar and
VLIW, and to multi-core/many-core parallel computers. During the uni-processor

Abstract This paper proposes a hardware thread manager for the polymorphic
parallel processor. The thread manager supports the MIMD mode with 8 threads
and SIMD mode with multiple threads using the SIMD controllers in a unified
approach to manage two operating modes to achieve a mixture of three types of
parallel computation. Thread manager monitors the progress of each thread, the
activity of near neighbor shared memory and the status of the router. It schedules
the execution slots for the threads. It can start and stop a thread, put a thread on
wait, resume the execution of a thread. Thread manager can also record the
working status of each thread, while avoiding the waiting problem caused by data
availability. This manager is able to maximize the efficiency of a processing
element in a polymorphic array processor.

Keywords Many core · Multithreading · Array processor · Parallel
processing·Graphics and Multimedia

1 Introduction

1 B. Qian (), T. Li
School of Electronic Engineering, Xi'an University of Posts and Telecommunications,
Xi'an, China

e-mail: bymoney@126.com
2 T. Yang
School of Computer, Xi'an University of Posts and Telecommunications,
Xi'an, China

3rd International Conference on Multimedia Technology（ICMT 2013)

© 2013. The authors - Published by Atlantis Press 1792

and superscalar era, the main drive of technology was to increase the CPU
frequency in order to improve CPU performance. This in turn drives up the power
consumption, which then becomes the bottleneck of the architecture. To overcome
the problem of the power wall, multi-core and many-core processors [1, 2] enter
the market. Parallel processing is used instead of increased CPU operating
frequency. However, the power consumption problem does not go away,
especially when the number of cores is large and processor utilization/efficiency is
low. One approach to improve the efficiency and utilization of the multi-core
computers is to use hardware accelerators to manage multi-threaded applications
and to speed up context switching [3]. This is the focus of this paper.

This paper proposes a hardware thread manager for the polymorphic
multimedia processor PAAG [4]. PAAG is able to seamlessly integrate three
forms of parallel computation, the data level parallelism (DLP), the thread level
parallelism (TLP), and the instruction level parallelism (ILP). The proposed
hardware thread manager helps to improve the computational efficiency of PAAG.

2 The Polymorphic Multimedia Processor

PAAG is a polymorphous array processor designed for graphics and multimedia
applications. This architecture supports both SIMD (Single Instruction Multiple
Data) and MIMD (Multiple Instruction Stream Multiple Data Stream) parallel
computational modes.

PE00 PE01 PE02 PE03

PE10 PE11 PE12 PE13

PE20 PE21 PE22 PE23

PE30 PE31 PE32 PE33

TM TM TM TM

TM TM TM TM

TM TM TM TM

TM TM TM TM

RC

RC

RC

RC

CC CC CC CC

C
lu
st
er
 c
on
tro
ll

RU RU RU RU

RU RU RU RU

RU RU RU RU

RU RU RU RU

Fig.1 Polymorphic parallel processor

PAAG consists of many clusters of processing elements (PEs). A 4x4 cluster is
shown in Fig. 1. The thread manager is a key component of PAAG. Each PE
contains up, down, left and right four shared memories for inter-PE
communications [4, 5]. A router (RU) is attached to each PE for remote messaging
and remote calls. A cluster has 4 row controllers, 4 column controllers and a

1793

cluster controller. These controllers allow SIMD operations on a row or on the
entire cluster.

Each PE in the polymorphic multimedia processor contains an ALU, four
contiguous shared memories, a data memory and an instruction memory as shown
in Fig. 2. It is able to launch two instructions in a cycle. There are two kinds of
modes SC load instruction and data: SIMD mode and MIMD mode.

ALU CRCR

TM

D-MEM I-MEM

RU

CR

CR
SC

Fig.2 Thread manager & single PE

TM (the thread manager) in Fig.2 is a dedicated hardware accelerator, and is
designed to improve the efficiency of the PE, especially when operating in
instruction level parallel mode.

3 Thread Manager Workflow

In our polymorphous array processor, an instruction may execute in either
blocking mode or non-blocking mode. While executing in blocking mode, an
instruction cannot proceed to the pipeline if its operands are not available. In such
a case, the program has to wait until operands become available. When multiple
threads are in execution, a blocked instruction causes a thread to be put on wait so
that other threads may proceed. Fast context switching is needed for efficient
execution of multi-threaded programs. Furthermore, each thread is also assigned a
quantum of execution. When its running time exceeds the quantum, it is also put
on wait. There are some other circumstances that may cause context switching.

In this paper, the hardware thread manager solves the problem of
computational efficiency for the polymorphic multimedia processor. Each PE may
have up to 8 SIMD threads and 8 MIMD threads.

• The cluster controller and the column controllers help to load instruction and
data to the PEs. The initial state of the threads is also loaded.

• Then, the thread manager schedules thread execution according to thread
status. The chosen thread will start executing its program.

• If the operands of a blocking instruction are not all available, the thread
manager will put the thread on wait. Other conditions may also block an
instruction and the thread needs be put on wait.

1794

• The thread manager monitors the shared memories for data availability, the
router status and its own thread status table for changes that may trigger status
change. Should that change occur, the thread manager reschedules the threads
for execution.

4 Thread Manager Functional Descr iption

The thread manager needs to monitor the execution status of the eight threads in a
PE. The TM needs to perform context switching in response to the status changes.
If a thread is blocked, the thread enters a wait state. If a thread’s required data
arrives, the thread is ready for execution again.

4.1 Thread register

Thread registers are used to store the working status of the threads and
configuration information. The thread manager schedules the threads based on
their ranks. There are two groups of registers, the thread configuration table
register (thread_configure_reg) and the thread status table register
(thread_state_reg).

Each entry in thread_configure_reg contains a total of 58 bits, including five
fields as shown in Table 1. The meaning of these five fields as follows.

• quant: The maximum execution time of a thread in each scheduled slot
• I-base: A thread instruction memory base address;
• I-size: The instruction memory size assigned to threads;
• M-base: A thread data memory base address;
• M-size: The data memory size assigned to threads;

Table 1 Thread configuration table register
fields quant I-base I-size M-base M-size
bits 10 14 10 14 10
Each entry in thread_state_reg contains a total of 38 bits, including six fields,

as shown in Table 2. The meanings of these six fields are as follows.

• PC: A thread's program counter value
• state: Current state of a thread;
• avail: Two source operands and a destination operand exists or not;
• mask: Source operand and the destination operand is being used currently

executing instruction;
• rank: Scheduling priority, 0 means highest priority;

1795

• stamp: Quant within the thread running time;

Table 2 Thread status table register
fields PC state avail mask rank stamp
bits 10 2 6 6 4 10

4.2 Data exchange instruction processing

Data exchange instructions can be issued by the PE or the RU. A PE may issue the
following data exchange instructions.

• MOVEF: This is a request for data from a remote PE. A request message is
sent to the remote PE through the router;

• MOVET: This sends data to remote PE. The data is sent out by the router. After
the data is sent, it continues to the next instruction;

• CALLR: This is a remote function call. A call message is sent through the
router and the current thread suspends execution until a RETR message arrives;

• RETR: This is a return from a remote function call. A message is sent by the
remote PE to the calling PE;

• MVT: This is a write operation to cluster memory. The data is sent to the
memory bank in a controller. The current thread is suspended until an ACK
signal comes back. It may then resume execution;

• MVF: This is a read operation to request data from cluster memory. A request
message is sent via the router to a controller and the thread suspends until the
requested data come back.

• CALLC: This is a SIMD operation. 8 SIMD threads is started after this
instruction. These threads is unified manage by SC.

4.3 Thread scheduling

This design of thread scheduling algorithms in a single module design (rank_ctrl
module). It is easy to modify. Scheduling algorithm currently used as follows [6].

• Each execution thread only runs the top rank in the sequence;
• Stamp value is equal to quant value, the thread stops executing, and switch to

rank last one in the sequence;
• Encounter neighboring communication is blocked, the thread stops executing,

and switch to rank last one in the sequence;
• Encounter routing communication is blocked, the thread stops executing;

1796

• When blocking data arrives, the executing thread stops executing, rank value
plus 1. Wake thread rank value becomes 0, means that rank in the top of
sequence.

Example of 0, 1, 2 and 6 four threads as follows:
Tid0
Tid1
Tid2
Tid6

Tid1
Tid2
Tid6
Tid0

Tid2
Tid6
Tid0
Tid1

Tid0
Tid2
Tid6
Tid1

Tid0 blocked

Tid0 data arrived

Tid1 execution time=quant

Fig.3 Thread scheduling

5 Thread Manager Design

According to the thread management functions, the TM can be divided into
the following five modules:

• tm_ctrl: Thread manager control module for controlling SIMD mode, RU
operation, PE control and arbitration;

• regfile: Register modules, including thread_configure_reg and
thread_state_reg two registers;

• stamp_ctrl: Controlling the stamp and the timeout signal;
• rank_ctrl: Control the rank value in thread_state_reg;
• state_ctrl: Control the state value in thread_state_reg.

tm_ctrl

regfile

stamp_ctrl

rank_ctrl

state_ctrl

simd_mode_request
simd_mode_respond

simd_mode_finish

thread_valid

pe_set_pc
pe_i_mem_base
pe_d_mem_base

pe_current_pc
pe_decode_mask

pe_de_dcahe_avail

pe_block
pe_block_mode

pe_rublock_code
pe_stop

pe_line_empty
ru_request

ru_respond
ru_transport_code

ru_thread_id
ru_finish

thread_configure_reg_wr
thread_configure_reg_addr
thread_configure_reg_data
thread_state_reg_rd
thread_state_reg_addr
thread_state_reg_data

set_pc_valid

pe_simd_mode

Fig.4 Thread Manager Structure Diagram
The state_ctrl module uses the state machine controlling. There are eight state

machines. Each state machine individually controls the corresponding thread.
These eight state machines are the same. And the states of each thread are

1797

recorded in the thread state table. Each state machine contains four states. As
follows:

• idle: Idle state, which means that the thread needs no instruction execution.
After the thread loads instruction and data, i.e. thread_valid = 1'b1, the thread
jumps to ready status;

• ready: Ready state, which means that the thread already has the executable
condition. The PE doesn’t execute the thread, probably due to PE executing
other threads or other reasons. When the thread is selected execution, i.e.
thread_hit = 1'b1, the thread jump to run state;

• run: Run state, which means that the thread is running. When the thread
running time stamp equal to the distribution of the execution time quant or
when forced to stop running, the thread jumps to ready state. After the thread
finish running, the thread jump to the idle state. When blocking the thread, the
thread jumps to wait state;

• wait: Wait state, which means that the thread is waiting for blocking data to
arrive. When the router or neighborhood communication blocking data arrives,
the thread will jump into the ready state, waiting for the thread to be selected
execution.

idle

ready wait

run
thread_valid=1'b1

thread_valid=1'b0

thread_hit=1'b1

thread_hit=1'b0

thread_over=1'b1

thread_timeout=1'b1
||thread_stop=1'b1

thread_block=1'b1

thread_data_arrive=1'b1 thread_data_arrive=1'b0

thread_over=1'b0&&
thread_timeout=1'b0

&&thread_block=1'b0
&&thread_stop=1'b0

Fig.5 tm_ctrl module state machine

6 Simulation and Per formance Analysis

This paper completes functional simulation in ModelSim, and edits 4x4 array
assembler. Simulation verifies that the thread manager works correctly and
produces correct results. The TM can run, switch and stop the thread properly [7].

After the completion of functional simulation, this paper made a simple
performance analysis. This article uses the eight different 16-core PE program
without TM. The first program load in No. 0 thread, the second program load in
No. 1 thread, and so on, eight threads are loaded corresponding program.

The statistics, the total number of program calculating is 3127 clocks with the
thread manager; the total number of eight programs calculating is 3762 clocks
without the thread manager. According to performance formula (1).

1798

TM without Clocks

TM with Clocks-TM without ClocksePerformanc = (1)

The performance value is 16.9%.

7 Summary

This paper proposes a hardware thread manager for the PAAG polymorphic
parallel processor. The hardware thread manager has been implemented and
verified on a Xilinx V6-550 FPGA board. In MIMD mode, this hardware thread
manager can manage up to 8 threads. The thread manager enables the efficient use
of the blocking mode execution. It can greatly enhance the utilization of the
processing elements and reduce processor power consumption.

Future research work will focus on more extensive testing and analysis of the
performance of the thread manager. According to the analysis results improve the
thread manager scheduling algorithm to achieve higher performance requirements.

Acknowledgements This study is supported by the National Science Foundation
of China (61136002) and the Shaanxi Province Science and Technology Research
and Development Program (2011K06-47).

References

1. Keckler S W, Dally W J, Khailany B, et al. GPUS and the future of parallel computing[J].
IEEE Computer, 2011, 44(9): 7-17

2. Marowka A, Gan R. Back to Thin-Core Massively Parallel Processors[J]. IEEE Computer,
2011, 44(12): 49-54

3. Liu Jin-Guang, Liang Man-Gui. The Development and the Software System Architecture of
Multi-core Multi-threading Processor[J]. Micro-processors, 2007, 1: 1-7

4. Tao Li, L. Xiao, H. Huang and J. Han, "PAAG: A Polymorphic Array Architecture for
Graphics and Image Processing", Proc. 5th Int. Symp. Parallel Architectures, Algorithms and
Programming (PAAP2012), Dec. 2013, Taipei, Taiwan, IEEE Computer Society CPS, pp242-
249.

5. Dongrui Fan, Hao Zhang, Da Wang, Xiaochun Ye, Fenglong Song, Guojie Li, Ninghui Sun.
Godson-T: An Efficient Many-Core Processor Exploring Thread-Level Parallelism[J]. IEEE
Computer Society, 2012, 32(10): 38-47

6. Liu Chung-Laung, Layland J W. Scheduling al-gorithms for multiprogramming in a hard-real-
time environment[J]. Journal of the ACM, 1973, 20(1): 46-61

7. T. F. Tsuei, W. Yamamoto. Queuing simulation model for multiprocessor systems[J].
Computer, 2003, 36(2): 58–64

1799

