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In the past few decades, with the rapid development of integrated circuit 
technology, the design flow has all been improved. During the same period, 
computer architecture has evolved from simple uni-processor, to superscalar and 
VLIW, and to multi-core/many-core parallel computers. During the uni-processor 
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and superscalar era, the main drive of technology was to increase the CPU 
frequency in order to improve CPU performance. This in turn drives up the power 
consumption, which then becomes the bottleneck of the architecture. To overcome 
the problem of the power wall, multi-core and many-core processors [1, 2] enter 
the market. Parallel processing is used instead of increased CPU operating 
frequency. However, the power consumption problem does not go away, 
especially when the number of cores is large and processor utilization/efficiency is 
low. One approach to improve the efficiency and utilization of the multi-core 
computers is to use hardware accelerators to manage multi-threaded applications 
and to speed up context switching [3]. This is the focus of this paper.  

This paper proposes a hardware thread manager for the polymorphic 
multimedia processor PAAG [4]. PAAG is able to seamlessly integrate three 
forms of parallel computation, the data level parallelism (DLP), the thread level 
parallelism (TLP), and the instruction level parallelism (ILP). The proposed 
hardware thread manager helps to improve the computational efficiency of PAAG. 

2 The Polymorphic Multimedia Processor  

PAAG is a polymorphous array processor designed for graphics and multimedia 
applications. This architecture supports both SIMD (Single Instruction Multiple 
Data) and MIMD (Multiple Instruction Stream Multiple Data Stream) parallel 
computational modes. 
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Fig.1 Polymorphic parallel processor 

PAAG consists of many clusters of processing elements (PEs). A 4x4 cluster is 
shown in Fig. 1. The thread manager is a key component of PAAG. Each PE 
contains up, down, left and right four shared memories for inter-PE 
communications [4, 5]. A router (RU) is attached to each PE for remote messaging 
and remote calls. A cluster has 4 row controllers, 4 column controllers and a 
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cluster controller. These controllers allow SIMD operations on a row or on the 
entire cluster. 

Each PE in the polymorphic multimedia processor contains an ALU, four 
contiguous shared memories, a data memory and an instruction memory as shown 
in Fig. 2. It is able to launch two instructions in a cycle. There are two kinds of 
modes SC load instruction and data: SIMD mode and MIMD mode. 
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Fig.2 Thread manager & single PE 

TM (the thread manager) in Fig.2 is a dedicated hardware accelerator, and is 
designed to improve the efficiency of the PE, especially when operating in 
instruction level parallel mode. 

3 Thread Manager  Workflow 

In our polymorphous array processor, an instruction may execute in either 
blocking mode or non-blocking mode. While executing in blocking mode, an 
instruction cannot proceed to the pipeline if its operands are not available. In such 
a case, the program has to wait until operands become available. When multiple 
threads are in execution, a blocked instruction causes a thread to be put on wait so 
that other threads may proceed. Fast context switching is needed for efficient 
execution of multi-threaded programs. Furthermore, each thread is also assigned a 
quantum of execution. When its running time exceeds the quantum, it is also put 
on wait. There are some other circumstances that may cause context switching. 

In this paper, the hardware thread manager solves the problem of 
computational efficiency for the polymorphic multimedia processor. Each PE may 
have up to 8 SIMD threads and 8 MIMD threads.  

• The cluster controller and the column controllers help to load instruction and 
data to the PEs. The initial state of the threads is also loaded.  

• Then, the thread manager schedules thread execution according to thread 
status. The chosen thread will start executing its program.  

• If the operands of a blocking instruction are not all available, the thread 
manager will put the thread on wait. Other conditions may also block an 
instruction and the thread needs be put on wait.  
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• The thread manager monitors the shared memories for data availability, the 
router status and its own thread status table for changes that may trigger status 
change. Should that change occur, the thread manager reschedules the threads 
for execution. 

4 Thread Manager  Functional Descr iption 

The thread manager needs to monitor the execution status of the eight threads in a 
PE. The TM needs to perform context switching in response to the status changes. 
If a thread is blocked, the thread enters a wait state. If a thread’s required data 
arrives, the thread is ready for execution again. 

4.1 Thread register 

Thread registers are used to store the working status of the threads and 
configuration information. The thread manager schedules the threads based on 
their ranks. There are two groups of registers, the thread configuration table 
register (thread_configure_reg) and the thread status table register 
(thread_state_reg). 

Each entry in thread_configure_reg contains a total of 58 bits, including five 
fields as shown in Table 1. The meaning of these five fields as follows. 

• quant: The maximum execution time of a thread in each scheduled slot 
• I-base: A thread instruction memory base address; 
• I-size: The instruction memory size assigned to threads; 
• M-base: A thread data memory base address; 
• M-size: The data memory size assigned to threads; 

Table 1 Thread configuration table register 
fields quant I-base I-size M-base M-size 
bits 10 14 10 14 10 
Each entry in thread_state_reg contains a total of 38 bits, including six fields, 

as shown in Table 2. The meanings of these six fields are as follows. 

• PC: A thread's program counter value 
• state: Current state of a thread; 
• avail: Two source operands and a destination operand exists or not; 
• mask: Source operand and the destination operand is being used currently 

executing instruction; 
• rank: Scheduling priority, 0 means highest priority; 
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• stamp: Quant within the thread running time; 

Table 2 Thread status table register 
fields PC state avail mask rank stamp 
bits 10 2 6 6 4 10 

4.2 Data exchange instruction processing 

Data exchange instructions can be issued by the PE or the RU. A PE may issue the 
following data exchange instructions. 

• MOVEF: This is a request for data from a remote PE. A request message is 
sent to the remote PE through the router; 

• MOVET: This sends data to remote PE. The data is sent out by the router. After 
the data is sent, it continues to the next instruction; 

• CALLR: This is a remote function call. A call message is sent through the 
router and the current thread suspends execution until a RETR message arrives; 

• RETR: This is a return from a remote function call. A message is sent by the 
remote PE to the calling PE; 

• MVT: This is a write operation to cluster memory. The data is sent to the 
memory bank in a controller. The current thread is suspended until an ACK 
signal comes back. It may then resume execution; 

• MVF: This is a read operation to request data from cluster memory. A request 
message is sent via the router to a controller and the thread suspends until the 
requested data come back. 

• CALLC: This is a SIMD operation. 8 SIMD threads is started after this 
instruction. These threads is unified manage by SC. 

4.3 Thread scheduling 

This design of thread scheduling algorithms in a single module design (rank_ctrl 
module). It is easy to modify. Scheduling algorithm currently used as follows [6]. 

• Each execution thread only runs the top rank in the sequence; 
• Stamp value is equal to quant value, the thread stops executing, and switch to 

rank last one in the sequence; 
• Encounter neighboring communication is blocked, the thread stops executing, 

and switch to rank last one in the sequence; 
• Encounter routing communication is blocked, the thread stops executing; 
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• When blocking data arrives, the executing thread stops executing, rank value 
plus 1. Wake thread rank value becomes 0, means that rank in the top of 
sequence. 

Example of 0, 1, 2 and 6 four threads as follows: 
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Tid0 data arrived

Tid1 execution time=quant

 
Fig.3 Thread scheduling 

5 Thread Manager  Design 

According to the thread management functions, the TM can be divided into 
the following five modules: 

• tm_ctrl: Thread manager control module for controlling SIMD mode, RU 
operation, PE control and arbitration; 

• regfile: Register modules, including thread_configure_reg and 
thread_state_reg two registers; 

• stamp_ctrl: Controlling the stamp and the timeout signal; 
• rank_ctrl: Control the rank value in thread_state_reg; 
• state_ctrl: Control the state value in thread_state_reg. 
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Fig.4 Thread Manager Structure Diagram 
The state_ctrl module uses the state machine controlling. There are eight state 

machines. Each state machine individually controls the corresponding thread. 
These eight state machines are the same. And the states of each thread are 
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recorded in the thread state table. Each state machine contains four states. As 
follows: 

• idle: Idle state, which means that the thread needs no instruction execution. 
After the thread loads instruction and data, i.e. thread_valid = 1'b1, the thread 
jumps to ready status; 

• ready: Ready state, which means that the thread already has the executable 
condition. The PE doesn’t execute the thread, probably due to PE executing 
other threads or other reasons. When the thread is selected execution, i.e. 
thread_hit = 1'b1, the thread jump to run state; 

• run: Run state, which means that the thread is running. When the thread 
running time stamp equal to the distribution of the execution time quant or 
when forced to stop running, the thread jumps to ready state. After the thread 
finish running, the thread jump to the idle state. When blocking the thread, the 
thread jumps to wait state; 

• wait: Wait state, which means that the thread is waiting for blocking data to 
arrive. When the router or neighborhood communication blocking data arrives, 
the thread will jump into the ready state, waiting for the thread to be selected 
execution. 
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ready wait

run
thread_valid=1'b1

thread_valid=1'b0
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thread_over=1'b0&&
thread_timeout=1'b0

&&thread_block=1'b0
&&thread_stop=1'b0

 
Fig.5 tm_ctrl module state machine 

6 Simulation and Per formance Analysis 

This paper completes functional simulation in ModelSim, and edits 4x4 array 
assembler. Simulation verifies that the thread manager works correctly and 
produces correct results. The TM can run, switch and stop the thread properly [7]. 

After the completion of functional simulation, this paper made a simple 
performance analysis. This article uses the eight different 16-core PE program 
without TM. The first program load in No. 0 thread, the second program load in 
No. 1 thread, and so on, eight threads are loaded corresponding program.  

The statistics, the total number of program calculating is 3127 clocks with the 
thread manager; the total number of eight programs calculating is 3762 clocks 
without the thread manager. According to performance formula (1). 
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TM without Clocks

TM with Clocks-TM without ClocksePerformanc =  (1) 

The performance value is 16.9%. 

7 Summary 

This paper proposes a hardware thread manager for the PAAG polymorphic 
parallel processor. The hardware thread manager has been implemented and 
verified on a Xilinx V6-550 FPGA board. In MIMD mode, this hardware thread 
manager can manage up to 8 threads. The thread manager enables the efficient use 
of the blocking mode execution. It can greatly enhance the utilization of the 
processing elements and reduce processor power consumption. 

Future research work will focus on more extensive testing and analysis of the 
performance of the thread manager. According to the analysis results improve the 
thread manager scheduling algorithm to achieve higher performance requirements. 
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