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Abstract

We present in this paper the singular manifold method (SMM) derived from Painlevé
analysis, as a helpful tool to obtain much of the characteristic features of nonlinear
partial differential equations. As is well known, it provides in an algorithmic way the
Lax pair and the Bäcklund transformation for the PDE under scrutiny.

Moreover, the use of singular manifold equations under homographic invariance
consideration leads us to point out the connection between the SMM and so–called
nonclassical symmetries as well as those obtained from direct methods. It is illustrated
here by means of some examples.

We introduce at the same time a new procedure that is able to determine the
Darboux transformations. In this way, we obtain as a bonus the one and two soliton
solutions at the same step of the iterative process to evaluate solutions.

1 Introduction

The advances in the last few years in the field of nonlinear partial differential equations
have been both exceedingly relevant and extremely impressive [21].

The study of similarity reductions for PDE’s that can be solved by IST led Ablowitz,
Ramani and Segur [2] to formulate what we know as the ARS conjecture: Every ordinary
differential equation that can be obtained as the similarity reduction of a PDE solvable
by IST has, up to a change of variables, the PP [33]. This conjecture provides a necessary
condition for checking whether a PDE is integrable or not. Mc Leod and Olver [28] have
tested some weak versions of this conjecture. Although there is no rigorous proof of it,
the many studies dealing with similarity reductions for integrable PDE’s seem to point to
its validity as a method of integrability.

The generalization of the PP for PDE’s was rigorously established by Weiss, Tabor
and Carnevale [36] in a widely recognized paper in which they also developed an elegant
formalism: The Singular Manifold Method (SMM) that we will consider here in detail
[37, 38]. It allows to obtain the celebrated Bäcklund transformations and Lax pair in a
straightforward and systematic manner. There have also been relationships established
between the Singular Manifold Method and τ -functions of the Hirota formalism [12, 18,
35].
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One different but not unrelated approach to integrability of PDE’s begins with the
seminal contribution of Lie in classical symmetries of differential equations, which has
been generalized thanks to the work of Bluman and Cole [6] and Olver and Rosenau [30,
31], and Fushchich et al [15, 16]. This new procedure deals with symmetries that leave
invariant just a subset of all the possible solutions of the PDE under scrutiny [15, 16].
These symmetries, which do not form a group in the Lie sense, appear however to be
extremely interesting for analyzing the integrability and properties of the PDE as well as
its relationship with the PP.

There exists another possibility to analyze nonlinear PDE’s. It consists on finding
symmetries not through the usual group–theoretical procedures but rather through the
so–called Similarity Transformations. Usually one chooses an ansatz [15, 16] that allows
one to find a change of variables connected with the symmetries of the equation such that
the PDE is reduced to an ODE which can be analyzed through the usual Painlevé tests
for ordinary nonlinear differential equations. The question of how to choose an adequate
set of ansätze leading to the right change of variables (the similarity transformations) has
extensively been analyzed by Clarkson and Kruskal [8]. A great deal of work and thought
has been dedicated in the last years to the question of what conditions a given nonlinear
PDE has to meet in order that the ansatz methods and the nonclassical method would
yield the same information. A related question [13, 34] is also whether it is possible to
generalize the ansatz methods in order that all the similarity transformations could be
obtained without using group theory. Our purpose here is to combine the direct method
(DM) and symmetry methods with Painlevé ideas. In fact, Cariello and Tabor made the
first crucial observation [7] that the DM and the SMM were almost identical when one
uses the singular manifold as a reduced variable. Furthermore, as it will be shown, the
form for solutions of the singular manifold is proven to be crucial to the answer on the
question of why the direct and nonclassical methods should (or should not) yield the same
information.

The plan of this paper will be the following. Section §2 is wholly devoted to an ex-
position, along general lines, of the Singular Manifold Method and its relationship with
the nonclassical symmetries. We will show in section §3 how this procedure provides an
extremely helpful tool to derive Bäcklund Transformations, Lax pair, Darboux Transfor-
mations and soliton solutions for the Korteweg–de Vries equation. The rest of the paper
constitutes the application of the same techniques to different PDE’s including PDE’s with
the conditional Painlevé property.

2 The Singular Manifold Method

2a) Truncated expansion and singular manifold equations

According to the generalization for PDE of the PP carried out by Weiss, Tabor and
Carnevale [36], we require that the solutions of such PDE be written in the form

u =
∞∑

j=0

uj(x, t)[φ(x, t)]j−α, (2.1)

where φ(x, t) is an arbitrary analytic function depending on the initial conditions that
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will be called the Movable Singularity Manifold henceforth. The uj(x, t) represent ana-
lytic functions that will be determined in terms of φ through the recurrence relationship
obtained from substitution of (2.1) on the correspondent PDE. This partial differential
equation is said to enjoy the Painlevé property if u is single–valued in the movable singu-
larity manifold, which requires α be a positive integer. The algorithmic procedure used to
determine whether a given PDE possesses the PP is quite well known (see [37] and [38]).
For us it is more important here to concentrate on the so called Singular Manifold Method
which emphasizes only those solutions which arise in truncation of the series (2.1),

u =
α∑

j=0

uj(x, t)[φ(x, t)]j−α = u0φ
−α + u1φ

1−α + .....+ uα, (2.2)

where φ is no longer an arbitrary function but the singular manifold [37] which makes
(2.2) to hold. At this point, it is extremely useful to introduce the following quantities to
be used throughout the paper:

w =
φt

φx
, (2.3.a)

v =
φxx

φx
, (2.3b)

s = vx −
v2

2
. (2.3c)

From the obvious condition φxt = φtx we can easily write the following relationships among
the quantities w, v, and s

vt = (wx + wv)x, (2.4.a)

st = wxxx + 2swx + wsx. (2.4b)

To see the importance of these quantities, note that the PP is invariant under homographic
transformations of φ as:

φ→ aφ+ b

cφ+ d
. (2.5)

It is easy to check that w and s (the schwartzian derivative) are homographic invariants
[11] but not v. Inserting (2.2) in the corresponding PDE, one can obtain the coefficients
uj in terms of w, s, and v. Also it follows from the substitution that uα is a solution of the
PDE which means that the ansatz (2.2) plays the additional role of being an auto-Bäcklund
transformation among solutions of the same PDE. Since uα is a solution of the PDE, the
singular manifold must verify an additional equation which can always be written as a
relationship among the homographic invariants and their derivatives. This last equation
and (2.4) define the singular manifold and will be called the singular manifold equations
henceforth. The conclusion of this procedure is that we can express the solutions u (we
shall drop the α-index henceforth) in terms of the singular manifold quantities as:

u = u(v, w, s) (2.6)

where w and s must satisfy the singular manifold equations. From this it follows that
the SMM is not only applicable to totally integrable equations but also to PDE without
the full PP. It suffices to analyze what solutions do have such a property through the
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truncation of the series (2.2) even though the complete PDE is not integrable according
to the classical Painlevé test.

2b) Homographic invariance and symmetries

Next we turn our attention to the problem of symmetries in order to establish a link
between the two procedures. The infinitesimal form of the Lie transformation of a PDE
can be written as:

x′ = x+ εξ(x, t, u) +O(ε2), (2.7a)

t′ = t+ ετ(x, t, u) +O(ε2), (2.7b)

u′ = u+ εη(x, t, u) +O(ε2), (2.7c)

so that the associated Lie algebra contains vector fields of the form

v = ξ
∂

∂x
+ τ

∂

∂t
+ η

∂

∂u
. (2.8)

The classical Lie method to determine the group of symmetries of a given PDE is
well known and can be found in various textbooks [3, 6]. We are more interested in
the nonclassical method ([6, 15, 30]) which requires that the symmetries should obey the
invariant surface condition,

ξ(x, t, u)ux + τ(x, t, u)ut = η(x, t, u) (2.9)

associated to the vector field v (2.8).
The final step is to find the set {ξ(x, t, u; τ(x, t, u); η(x, t, u)} of components of the

vector field by using the techniques described in books [6] and papers ([9, 10, 24, 29]).
The method requires one to consider the cases τ = 0 and τ 6= 0 separately.

We note however that the nonclassical method deals mainly with symmetries of the
solutions not of the PDE [16, 17]. Our claim is that the nonclassical symmetries are
related to the PP because the Lie point symmetries of the solutions of the SMM are pre-
cisely nonclassical symmetries. Therefore we need to find the derivatives ux and ut of the
solution defined in (2.6) to apply the condition (2.9). At this point the dependence on v
of (2.6) appears to be of paramount importance. Since the PP is invariant under homo-
graphic transformations, the presence of the singular manifold in (2.9) must be realized
just through quantities that are homographic invariants themselves. Consequently v must
be eliminated from the equations. If the solution (2.6) depends linearly on v (Burgers or
Fitzhugh-Nagumo equations), the solution (2.6) itself can be used to eliminate v. On the
other hand, if (2.6) depends quadratically on v (for example KdV or Boussinesq equations)
then v2 could indeed be eliminated but v is still present in the expressions for ux and ut.

We are lead to the conclusion that if the dependence on v of (2.6) is nonlinear, the
derivatives ux and ut will depend on v which in turn means that the only possibility for
(2.9) to depend just on homographic invariants is that τ must be different from zero.
However for linear dependence, one can use (2.6) itself to eliminate the dependence on v
of (2.6). Thus, the derivatives ux and ut will not depend on v, and (2.9) may contain cases
bold with both τ zero and nonzero, which implies a richer structure of symmetries. In fact,
as we shall show in the examples that follow, it will be possible to obtain the differential
equations that the vector field components {ξ; τ ; η} obey just from the singular manifold
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equations. This clearly shows the intimate connection between nonclassical symmetries
and the SMM. The classification based on the nonlinear or linear dependence of the solu-
tions on the quantity v is the key point to discerning when we shall be able to obtain the
same (or less) information from the direct method and the nonclassical method.

In the case in which the singular manifold is characteristic [37] (φx = 0), one important
point must be emphasized. Note that for φx = 0 the quantities (2.3) are undefined. The
appropriate definitions are now:

q =
φtt

φt
(2.10a)

and

h = qt −
q2

2
(2.10b)

where h is now the only homographic invariant. The discussion about the determination
of the infinitesimal in terms of just homographic invariants remains valid for the case of
the characteristic manifold. So that, the infinitesimal can have dependence on h but not
on q.

One should add at this point that the singular manifold may exhibit more symmetries
than the ones found through the nonclassical method. Lakshmanan and Sahadevan [23]
have shown that some ODE’s having the PP possess in addition contact symmetries that
in turn give rise to first integrals. This result strongly suggests that for the PDE case the
PP must be related to the so called Lie-Bäcklund symmetries.

3 The Korteweg–de Vries equation

The combined knowledge of the Bäcklund Transformation (2.2) and the singular manifold
equations provides a systematic procedure to obtain the Lax pair, Darboux transformation
and solutions for the PDE under consideration. To explain it, let us consider the KdV
equation in the form:

ut − 6uux + uxxx = 0 (3.1)

The truncated solution for u derived from the SMM could be written [36] as:

u = −2
∂2

∂x2
(lnφ) + u2 (3.2)

Substitution of (3.2) into (3.1) provides the singular manifold equations, which in this case
read:

6u2 = w + 4vx + v2, (3.3a)

w + s+ 6λ = 0. (3.3b)

3a) Lax pair

Furthermore, the Riccati equation (3.3b) can be linearized by the following change:

φx = ψ2 → v = 2
ψx

ψ
(3.4)
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such that the corresponding linear system is:

ψxx = (u2 + λ)ψ, (3.5a)

ψt = −u2xψ + 2(u2 − 2λ)ψx (3.5b)

whose compatibility condition demands that u2 must be a solution of equation (3.1) as
long as λ is independent of time.

As a result, equation (3.5) represents precisely the Lax pair for KdV, where λ plays
the role of the spectral parameter of the Inverse Scattering problem [1].

3b) Generation of the solutions. Hirota’s Formalism

However, unlike the IST method, the Lax pair is now used to generate solutions of the
equation by an iterative procedure. Indeed, expression (3.2) represents an auto-Bäcklund
transformation among solutions of the KdV equation. Knowing the seed solution u2,
solving (3.5) allows one to obtain ψ and hence the singular manifold from (3.4). The
auto-Bäcklund transform (3.2) leads in this way to a new solution for KdV.

In order to generate solutions, if, for example, one starts from the trivial solution
u2 = 0 and we set λ = k2, then the simplest solution for the eigenfunction of the Lax pair
will be:

ψ = ek(x−4k2t+x0) (3.6)

Now solving (3.4), we have for φ:

φ = 1 + e2k(x−4k2t+x0) (3.7)

with the exception of a multiplicative constant, which is irrelevant for the final result.
From here, simple calculation yields a new solution for KdV making use of (3.2):

u(x, t) = −2k2 sech2{k(x− 4k2t+ x0)} (3.8)

where x0 is an arbitrary integration constant.
The process can be iterated n times, obtaining at each step the corresponding singular

manifold φi. After n iterations, the solution for n-solitons can be written as:

un = −2
∂2

∂x2
(lnφn) + un−1

2 =

= −2
∂2

∂x2
(lnφn)− · · · − 2

∂2

∂x2
(lnφ0) + u2 = −2

∂2

∂x2
(lnΦ) + u2 (3.9)

where Φ = φ0φ1 · · ·φn. The result (3.9) has a direct analogy with the ansatz of the
Hirota bilinear method, in this case it being possible to identify Φ with the τ function
corresponding to KdV [18].

3c) Darboux transformations

We shall now see how to establish the connection between the singular manifold method
and the Darboux transformations for the KdV equation [5, 27]. This procedure, as we shall
see, will be able to calculate the solution with two solitons simply , by merely considering
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the Lax pair as a system to which the Painlevé analysis can be applied simultaneously
with the starting equation. It should be stressed here that the process to be described
below, based on [20], has been successfully applied to other systems [14] and is an evident
proof of the close relation between the singular manifold, auto-Bäcklund transformations,
and Darboux transformations.

For our analysis, we shall consider the KdV equation and its corresponding Lax pair:

u′t + u′xxx − 6u′u′x = 0, (3.10a)

ψ′xx = (u′ + λ′)ψ′, (3.10b)

ψ′t = −u′xψ′ + (2u′ − 4λ′)ψ′x, (3.10c)

as a set of nonlinear equations coupled in u′ and ψ′, for which the corresponding truncated
Painlevé expansions, evaluated from an analysis of dominant terms, can be written as:

u′ = u− 2
(
φx

φ

)
x

, (3.11a)

ψ′ = ψ +
Ω
φ
, (3.11b)

where φ is the singular manifold.
Owing to the actual form of (3.11), the functions u and ψ are solutions of equations (3.10);
that is:

ut + uxxx − 6uux = 0, (3.12a)

ψxx = (u+ λ′)ψ, (3.12b)

ψt = −uxψ + (2u− 4λ′)ψx. (3.12c)

Additionally, the singular manifold φ satisfies (in agreement with (3.3)):

u =
1
2

(
vx +

v2

2
− 2λ

)
, (3.13a)

w + s+ 6λ = 0, (3.13b)

which can be linearized, as seen above, with the help of the transformation:

φx = ϕ2, (3.14)

to give:
ϕxx = (u+ λ)ϕ, (3.15a)

ϕt = −uxϕ+ (2u− 4λ)ϕx. (3.15b)

From expressions (3.12b-c) and (3.15), it is immediate that ϕ and ψ are eigenfunctions
of the same Lax pair for the same potential u but with different spectral parameters λ
and λ′.

The following step will be to evaluate the equations that should be satisfied by the p
function of (3.11b). To do so, by substituting (3.11) in (3.10) one sees that Ω must be
such that it will satisfy:

Ω(λ− λ′) = ϕ(ϕψx − ψϕx) (3.16)
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Finally, inserting (3.16) in (3.11b), one immediately obtains the desired connection
with the Darboux transformations:

φ′x = ψ′2 =
1
φ2

∣∣∣∣∣ φ2 −Ω

Ω + 2φψ ψ2

∣∣∣∣∣ (3.17)

3d) The Singular Manifold Method, Nonclassical symmetries
and Similarity reductions

As we have shown, the SMM allows one to write a truncated solution as:

u = u2 − 2
(
φx

φ

)
x

(3.18)

Let us now remember that substitution of (3.18) into (3.1) provides for u (where we
have dropped the index 2 for simplicity) the following expression in terms of the singular
manifold:

u =
1
6
(w + 4s+ 3v2) (3.19)

where w and s are such that:
w + s+ 6λ = 0 (3.20)

Also (using (3.20a)) w must satisfy the following PDE:

wt + wxxx − 3wwx − 12λwx = 0. (3.21)

As we have already said in §2, we would like to eliminate v from the equations since it is
not an homographic invariant. The result is:

v2 = 2u+ w + 8λ (3.22a)

vx = u− w

2
− 2λ (3.22b)

We shall also need in the rest of the analysis the quantities ux and ut which with the help
of (3.19-22) are easily found to be:

ux = vu− wv

2
− wx

2
− 2λv (3.23a)

ut = 2wxu+ wwx −
wt

2
+ v

[
wxx + wu− w2

2
− 2λw

]
+ 8λwx (3.23b)

To establish the relationship between the SMM and the nonclassical symmetries,
we first note that the symmetry condition requires that the vector field components
{ξ(x, t, u); τ(x, t, u); η(x, t, u)} satisfy the invariant surface condition ([3, 6, 24, 30]).

ξ(x, t, u)ux + τ(x, t, u)ut = η(x, t, u). (3.24)

Comparison of (3.23) and (3.24) shows that ξ and τ must be such that the result of
the substitution of (3.23) into (3.24) should only be dependent upon the homographic
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invariants w and s (actually only w since s can be eliminated with the help of (3.20)).
The non appearance of terms depending upon v requires:

ξ

[
u− w

2
− 2λ

]
+ τ

[
wxx + wu− w2

2
− 2λw

]
= 0, (3.25)

or equivalently,
ξ + wτ = 0 (3.26a)

wxx = 0 (3.26b)

Note that to obtain nontrivial vector field components, one is forced from (3.26a) to
have τ 6= 0. Otherwise ξ would also vanish. Also we have from (3.21)

wt + wxxx − 3wwx − 12λwx = 0. (3.26c)

The simultaneous solution of (3.26a-c) leads to:

w = −α(t)x− β(t), (3.27)

where α and β satisfy the following ODE’s,

αt + 3α2 = 0, (3.28a)

βt + 3αβ − 12λα = 0, (3.28b)

whose general solution can easily be found to be:

α =
1

3(t+ t0)
(3.29a)

β =
(x0 + 12λt)
3(t+ t0)

. (3.29b)

Finally using (3.27) and (3.29) in (3.24) and (3.26a), we obtain for the vector field com-
ponents:

ξ

τ
=

(x+ x0 + 12λt)
3(t+ t0)

(3.30a)

η

τ
= − 1

3(t+ t0)
(2λ+ 2u) (3.30b)

These symmetries are exactly the same that those obtained from both the classical Lie and
the nonclassical methods ([8] and [22]). Actually, it is well known that the NCM yields
no additional reductions for the KdV Equation.

We now turn our attention to the link between the SMM and the direct method of
Clarkson and Kruskal [8]. Let us now suppose that what these authors call the reduced
variable z(x, t) is such that our singular manifold φ is just a function on z(x, t). In this
way the definitions (2.3) take now the form,

w =
zt
zx
, (3.31a)
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v =
zxx

zx
+ zxp(z), (3.31b)

where

p(z) =
φzz

φz
. (3.32)

Comparison between (3.27) and (3.31a) leads to a reduced variable of the form

z = θ(t)x+ σ(t), (3.33a)

where

α = −θt

θ
, (3.33b)

β = −σt

σ
. (3.33c)

Using (3.31) and (3.33) in the equation (3.21) for the singular manifold it is easy to
check that σ and θ must verify the equations:

θt

θ
= Aθ3, (3.34a)

σt

θ
= (Aσ +B)θ2 + λ, (3.34b)

while p(z) satisfies

pz −
p2

2
= −(Az +B). (3.35)

Indeed, A and B are arbitrary constants. The reduced variable (3.33a) together with (3.34)
coincides exactly with those determined through the direct method in [8]. The solutions
for the equation follow easily from the above. Inserting (3.31) in (3.19), we find:

u =
1
6
zt
zx

+ z2
xω(z) (3.36)

This last equation is the ansatz [15],[16] for the solutions, used in [8]. In our case

ω(z) =
1
6
(4pz + p2) (3.37)

The KdV equation has also truncated solutions in terms of a characteristic singular
manifold. If φx = 0 [37], the truncated expansion takes the form (see appendix II for the
details):

u′ = u+
u0

φ
, (3.38)

where
6u0x = −φt. (3.39)

Inserting (3.38) in (3.1), we obtain the following expression for u in terms of the singular
manifold:

u =
x

12
q(t), (3.40a)
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where q(t) has been defined in (2.10a). Furthermore the equation for the singular manifold
is just:

h = qt −
q2

2
= 0. (3.40b)

The equations (3.40) constitute a reduction of KdV that can be interpreted as a particular
case of the direct method in which the reduced variable is t. (see Lou [25, 26]).

The symmetries of (3.40) can be obtained noting that the derivatives of (3.40) are

ux =
u

x
, (3.41a)

ut = 6
u2

x
, (3.41b)

where we have used (3.40a) to eliminate q. The expression for the invariant surface con-
dition is:

ξ

[
u

x

]
+ τ

[
6
u2

x

]
= η. (3.42)

There are two different possibilities:
i) τ = 0
In such a case the other infinitesimals are (from (3.42)):

ξ = 1, (3.43a)

η =
u

x
. (3.43b)

ii) τ = 1
Insofar the solution (3.40a) satisfies uxx = 0, the equation (3.1) can itself be written

as
ut − 6uux = 0. (3.44)

This expression has exactly the form of (3.42) with

ξ = −6u, (3.45a)

η = 0. (3.45b)

The symmetry (3.45) is not a solution of the equations of nonclassical symmetries of
KdV [22]. Indeed, to obtain these equations, the coefficient in uxx is required be zero.
Nevertheless, (3.45) is not a symmetry of (3.1) but of the system:

ut − 6uux = 0, (3.46a)

uxx = 0. (3.46b)

It follows that we do not longer need to require this coefficient be zero since uxx already
vanishes. Therefore (3.45) is nothing but a nonclassical symmetry of the solution (3.40a).
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4 The Modified Korteweg–de Vries equation

4a) The Singular Manifold Method

The Painlevé test for the mKdV equation

ut + uxxx − 6u2ux = 0 (4.1)

has been carried out in [36] and [38]. Truncated solutions are obtained through the auto-
Bäcklund transformation

u′ = u+
φx

φ
, (4.2)

where φ is the singular manifold. The condition for u′ to be a solution of (4.1) can be
expressed as a condition over the homographic invariant w and s in the form:

u = −v
2

(4.3)

and
w + s = 0, (4.4a)

st = wxxx + wsx + 2swx. (4.4b)

One can easily eliminate s from (4.4a-b) yielding:

wt + wxxx − 3wwx = 0, (4.5)

which incidentally is the KdV equation. Due to the linear dependence of (4.3) on v, one
can express v through (4.3) in terms of u:

v = −2u, (4.6a)

and using (4.4a),
vx = 2u2 − w. (4.6b)

As opposed to the KdV equation, in the mKdV equation we can eliminate v in cal-
culating the derivatives ux and ut such that these derivatives depend just on u and the
homographic invariants. Their expressions are

ux =
w

2
− u2, (4.7a)

ut = −wu2 + wxu−
wxx

2
+
w2

2
, (4.7b)

where w is a solution of (4.5).

4b) The SMM, Nonclassical symmetries and Similarity reductions

The substitution of (4.7) into the surface invariant condition

ξ(x, t, u)ux + τ(x, t, u)ut = η(x, t, u) (4.8)
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leads to:

ξ

[
w

2
− u2

]
+ τ

[
−wu2 + wxu−

wxx

2
+
w2

2

]
= η. (4.9)

Now the difference with previous cases lies in the fact that (4.9) does not depend on v
and we do not have restrictions on ξ and τ due to the presence of v in (4.7). However the
expressions for ξ and τ can still be found by remembering that w must satisfy (4.5). To
check this, we must distinguish between two separate cases.

i) τ = 0
Without loss of generality we can take ξ = 1. Then the surface invariant condition can

be written as
η = ux =

w

2
− u2. (4.10)

Since w satisfies (4.5), we can obtain the equation verified by η just by substituting

w = 2(η + u2) (4.11)

into (4.5). The result is the following PDE (See Appendix I)

ηt + ηxxx − 6u2ηx + 3ηηxxu − 12uη2 + 3η2ηxuu + η3ηuuu +

+3ηxηxu + 3ηηuηxu + 3ηηxηuu + 3η2ηuηuu = 0. (4.12)

This last equation is exactly the same one obtained using the nonclassical method with
τ = 0. The advantage of our procedure is that we obtain as a bonus the solution (4.11) of
this equation.

It is important to emphasize that all truncated solutions of the form (4.3) possess this
symmetry without any additional restriction on the singular manifold φ. The only condi-
tion is that the system (4.4) must hold. The symmetries described in this subparagraph
cannot be obtained through the direct method as we shall discuss below.

ii) τ 6= 0
In this case there is no loss of generality by setting τ = 1. Thus equation (4.9) reads:

ξ

[
w

2
− u2

]
+

[
−wu2 + wxu−

wxx

2
+
w2

2

]
= η. (4.13)

This equation is equivalent to an equation for wxx as:

wxx = −2η + ξ(w − 2u2)− 2wu2 + 2wxu+ w2, (4.14)

and since w must also verify (4.5), using together (4.5) and (4.14), we can obtain a system
of equations for ξ and η that reads (see Appendix I):

ηt + ηxxx + 3ηξx − 6u2ηx = 0, (4.15a)

ξt + ξxxx − 3ηxxu + 3ξξx + 12u2ηx − 3ηξu − 6u2ξx + 12uη = 0, (4.15b)

ξξu + 18u2ξu − 3ηxuu + 3ξxxu = 0, (4.15c)

ξu = 0, (4.15d)
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ηxu − ξxx = 0, (4.15e)

ηuu − 3ξxu = 0. (4.15f)

These equations are indeed the ones obtained using the nonclassical method [24] but the
fact that they can be obtained combining the SMM with the NCM seems quite remarkable.
The solution of (4.15) is simple and indeed contained in [22]. If ξ and η are

ξ = −w (4.16a)

η = wxu (4.16b)

then from (4.14) we see that:
wxx = 0. (4.16c)

The integration of (4.16c) using (4.9) gives:

w = −α(t)x− β(t), (4.17a)

where α and β must satisfy the ODE’s:

αt + 3α2 = 0, (4.17b)

βt + 3αβ = 0, (4.17c)

with solution given by:

α =
1

3(t+ t0)
, (4.18a)

β =
x0

3(t+ t0)
. (4.18b)

Note that (4.16) corresponds to the well known symmetry of MKdV ([21] and [22]); for
this equation, the nonclassical symmetries with τ 6= 0 are equivalent to those determined
through the classical Lie method.

As has already been mentioned, the symmetries one can obtain using the Direct Method
are just those with τ 6= 0. The relationship with the SMM is established as in the previous
cases by imposing that the SMM φ must be just a function of the reduced variable z(x, t)
in the form:

z = θ(t)x+ σ(t) (4.19a)

such that:
w =

zt
zx
, (4.19b)

v = zxp(z), (4.19c)

p(z) =
φzz

φz
, (4.19d)

The obvious identification of (4.17a) with (4.19b) gives:

α(t) = −θt

θ
, (4.20a)
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β(t) = −σt

θ
. (4.20b)

Using (4.19) in the singular manifold equations (4.4), one can conclude that θ and σ must
satisfy

θt

θ
= Aθ3, (4.21a)

σt

θ
= (Aσ +B)θ2, (4.21b)

with A and B arbitrary constants such that:

pz −
p2

2
= −(Az +B). (4.21c)

The reduction ansatz can be found upon substitution of (4.19) into the general form of
the truncated solution (4.3). We obtain

u = zxω(z), (4.22)

where in our case
ω(z) = −p

2
. (4.23)

Both the reduction ansatz (4.22) and the reduced variable (4.19a) together with the equa-
tions (4.21) are the results of the Direct Method obtained in [8].

We close this example by pointing out that for MKdV, there are not truncated solutions
with φx = 0.

5 Diffusion equation in two dimensions

The diffusion equation

ut =
1
r

[
r

(
ur

u

)]
r

(5.1)

is a particular case of the general radially symmetric diffusion equations considered in [19].
We shall use this example to illustrate the case of an equation which does not possess the
PP, but still the SMM can be used to analyze both truncated solutions and nonclassical
symmetries.

5a) The Singular Manifold Method

As we have already pointed out, (5.1) does not possess the PP. However one can find
solutions with the PP. In order to do this, one should use the following truncation ansatz:

u = − φ2
r

φtφ
(5.2)

which gives rise to the singular manifold equations of the form:

vr −
(
wr

w

)
r
− 1
r

wr

w
+
v

r
= 0, (5.3a)

wt

w2
− wr

w
+

1
r

= 0, (5.3b)
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vt = (wr + wv)r. (5.3c)

These equations form an overdetermined system whose solution can be found easily to be:

w = rβ(t)(a ln r + b), (5.4a)

v =
wr

w
+
α(t)
r
, (5.4b)

where a and b are arbitrary constants, and where α(t) and β(t) must satisfy the following
first–order system of ODE’s:

βt = aβ2, (5.5a)

αt = aβ(α+ 2). (5.5b)

In order to obtain ur and ut, we differentiate (5.2) and next we use (5.3) and (5.4) to
eliminate v. The result is:

ur =
(
α

r

)
u+ wu2, (5.6a)

ut =
(
wr + (α+ 1)

w

r

)
u+ w2u2. (5.6b)

5b) The SMM, Nonclassical symmetries and Similarity reductions

Inserting, as usual, equations (5.6) into the invariant surface condition, one easily finds:

ξ(r, t, u)
[(
α

r

)
u+ wu2

]
+ τ(r, t, u)

{[
wr + (α+ 1)

w

r

]
u+ w2u2

}
= η(r, t, u), (5.7)

and since the above expression is independent of v, one should distinguish as usual among
the τ = 0 and the τ 6= 0 cases.

i) τ = 0
We set ξ = 1 and then (5.7) yields

η = ur =
(
α

r

)
u+ wu2. (5.8)

Let us obtain separately the equations for the nonclassical symmetries using just group
theory ( refs. [6],[30]). The result is:

u3ηt = u2ηrr + 2u2ηηru +
1
r
u2ηr −

1
r2
u2η + u2η2ηuu−

−3uηηr − 2uη2ηu −
1
r
uη2 + 2η3 (5.9)

It is an easy task to check that (5.8) is precisely the solution of (5.9) when w is given by
(5.4a). Therefore the solutions of the form (5.2) possess a nonclassical symmetry given by
(5.8).

ii) τ 6= 0
Setting now τ = 1, we obtain wr from (5.7) in the form:

wr =
η

u
−
(
wu+

α

r

)
ξ − w2u− w

r
(α+ 1). (5.10a)
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In addition, w must satisfy the singular manifold equations (5.3b). Inserting (5.10a) into
this last equation, one obtains:

wt =
w

u
η − w

(
wu+

α

r

)
ξ − w3u− w2

r
(α+ 2). (5.10b)

The compatibility condition wtr = wrt between (5.10a) and (5.10b) forces ξ and η be of
the form

ξ = −w = −rβ(t)[a ln r + b] (5.11a)

η = ξ

(
α

r
u+ wu2

)
+
(
wr + (α+ 1)

w

r

)
u+ w2u2 = β(2a ln r + 2b+ a)u, (5.11b)

where
βt = aβ2 (5.11c)

If we now look for the equations of the nonclassical symmetries obtained by using solely
the group-theoretical non-classical method, we obtain:

uξuu + ξu = 0 (5.12a)

ηu − 2u2ξξu +
[
2ξru − ηuu −

2
r
ξu

]
u− η

u
= 0 (5.12b)

[−ξt − 2ξξr + 2ηξu]u2 +
[
ξrr − 2ηru −

1
r
ξr +

1
r2
ξ − ηξ

]
u+ 2ηr = 0 (5.12c)

[ηt + 2ηξr]u+
[
−ηrr −

1
r
ηr + η2

]
= 0 (5.12d)

One can conclude without too much effort that the solutions of (5.12) are given by:

ξ = −rγ(t)[a ln r + b], (5.13a)

η = γ(t)[2a ln r + 2b+ 2a− c]u, (5.13b)

where
γt = cγ2. (5.13c)

The solution (5.11) obtained through the SMM corresponds to (5.13) in the particular
case in which c = a. We shall see below that this case is the only, in which the associated
similarity reduction leads to an ODE of the Painlevé type.

Next we shall try to establish a relationship between singular manifold equations and
the reduction ansatz of the direct method. Let us assume as always that the singular
manifold φ depends just on the reduced variable z. The truncation ansatz leads to

u =
z2
r

zt
p(z), (5.14a)

where

p(z) = −φz

φ
. (5.14b)
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Aside from the ansatz, w given by (5.4a) leads to a reduced variable that takes the form:

z = θ(t)[a ln r + b], (5.14c)

where
θt

θ
= aβ(t), (5.15)

and β(t) can be determined from (5.11). It is not hard to check using the reduction ansatz
(5.14) in (5.1) that the resulting ODE satisfied by p(z) must be of the form(

pz

p

)
z

− pz +
2
z2

= 0, (5.16)

which is an ODE of the Painlevé type.
The reductions associated to the symmetries (5.13) are also of the form (5.14), but in

this case θ(t) is given by θt
θ = aγ(t) where γ(t) is defined in (5.13c). One can easily check

that the reduced equation is now(
pz

p

)
z

− pz +
(
c

a
− 1

)
p+

2
z2

= 0. (5.17)

This is not an ODE of the Painlevé type except in the case c = a which is precisely the
one determined by the SMM.

Conclusions

We do not know whether all this analysis will eventually become a set of theorems
proving with all possible generality the detailed properties that make the SMM (based
upon the Painlevé property) an invaluable tool for analyzing partial differential equations,
its symmetries, and reductions ansatzë for its solutions. An interesting point of view which
presents a new perspective in the link between symmetries and similarity reductions has
recently put forward by Olver [32] and Arrigo and Broadbridge [4]. Awaiting for a more
comprehensive formal theory, we still hope in the field of Applied Mathematics to continue
our line of research by offering more and more cases of physical interest in which this
formalism proves to be both useful and beautiful.
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We would like to thank Prof. J. M. Cerveró for encouragement, illuminating discus-
sions, and careful reading of the manuscript. Also we thank J.Villarroel, P. Clarkson and
E. Mansfield for interesting suggestions.

This research has been supported in part by DGICYT under project PB92-0302.
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• APPENDIX I: Symmetries of mKdV

As we have seen in §4, the cases τ = 0 or τ 6= 0 must be discussed separately.
1) τ = 0
Substitution of (4.11) in (4.5) yields:

Dtη +Dxxxη − 6u2Dxη − 12uη2 = 0, (A.I.1)

where D means a total derivative since

ux = η(x, t, u). (A.I.2)

If we now take partial derivatives in (A.I.2) and with the aid of (4.1):

ut = 6u2η −Dxxη, (A.I.3)

we finally obtain (4.12).
2) τ 6= 0

From the equations (4.7.a) and (4.7b) it is easy to obtain:

w = 2(ux + u2), (A.I.4)

wxx = −2A+ 4uuxx + 4u2
x + 12u2ux, (A.I.5)

where
A = η − ξux = ut. (A.I.6)

Using (A.I.4) and (A.I.5) in (4.5), the result is:

wt = 2DxA+ 4uA, (A.I.7)

and ut has been eliminated using (A.I.6) and the same has been done for uxxx with the
aid of (4.1).
Imposing the compatibility condition wxxt = wtxx between (A.I.5) and (A.I.7) and elimi-
nating ut and uxxx as before, we obtain:

DtA+DxxxA− 6u2DxA− 12uuxA = 0, (A.I.8)

with A given by (A.I.6). This is the usual equation for the nonclassical symmetries [15].
Now it is necessary to proceed exactly as in the nonclassical method [24] expressing the
total derivatives in terms of the partial ones. The result is the equations (4.15).

• APPENDIX II: Characteristic Singular Manifold
for KdV

If the singular manifold is characteristic (φx = 0), the truncation of the series (3.1) is:

u′ = u+
α−1∑
j=0

uj(x, t)[φ(t)]j−α. (A.II.1)
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The substitution of such an expansion in (3.1) provides:

α = 1, (A.II.2a)

6u0x = −φt, (A.II.2b)

u0t + (u0xx − 6uu0)x = 0, (A.II.2c)

ut + uxxx − 6uux = 0. (A.II.2d)

And the integration of (A.II.2b-c) yields :

u0 =
−1
6

(φtx+m(t)) , (A.II.3.a)

u =
1
6

φtt

2 x
2 +mtx+ n(t)
φtx+m(t)

, (A.II.3b)

where m and n are functions of t. Inserting (A.II.3b) in (A.II.2d), we obtain:

h = qt −
q2

2
= 0, (A.II.4a)

mt

m
=
q

2
, (A.II.4b)

n = 0. (A.II.4c)

and q has been defined in (3.10a) . The solution (A.II.3b) leads finally to:

u =
x

12
q(t), (A.II.5)

where q satisfies (A.II.4a).
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[33] Painlevé P., Acta Mathematica, Paŕıs, 1900.
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