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Abstract

We study symmetries of the real Maxwell-Bloch equations. We give a Lax pair, bi-
Hamiltonian formulations and we find a symplectic realization of the system. We have
also constructed a hierarchy of master symmetries which is used to generate nonlinear
Poisson brackets. In addition we have calculated the classical Lie point symmetries
and variational symmetries.

1 Introduction

This paper is an attempt to understand the connection between two areas of Mathematics
both dealing with differential equations. The first area is the application of Lie groups in
the study of differential equations, most specifically the determination of symmetry groups.
The second is restricted to a class of differential equations known as integrable Hamilto-
nian systems. The list of topics in this second area includes bi-Hamiltonian structure,
recursion operators, symmetries, master symmetries, Lax formulations, Poisson and sym-
plectic Geometry. This area of integrable systems has been studied extensively for infinite
dimensional systems such as the KdV, Burgers, Kadomtsev-Petviashvili, Benjamin-Ono
equations and for some finite–dimensional systems such as the Toda lattice for example.
Symmetries and master symmetries for the Toda lattice were calculated in [3] and [4]. In
this paper, we do a similar analysis for a three dimensional integrable system called the
real Maxwell-Bloch equations.

A symmetry group of a system of differential equations is a Lie group acting on the
space of independent and dependent variables in such a way that solutions are mapped
into other solutions. Knowing the symmetry group allows one to determine some special
types of solutions invariant under a subgroup of the full symmetry group, and in some
cases one can solve the equations completely. The symmetry approach to solving differ-
ential equations can be found, for example, in the books of Olver [13], Bluman and Cole
[1], Bluman and Kumei [2], Fushchych and Nikitin [8], and Ovsiannikov [14]. One method
of finding symmetry groups is the use of recursion operators, an idea introduced by Olver
[12]. The existence of a recursion operator provides a mechanism for generating infinite
hierarchies of symmetries. Most of the well–known integrable equations, including the
KdV, do have a recursion operator. In this paper, we attempt to construct a recursion
operator for the Maxwell-Bloch system by finding a second Hamiltonian structure. Unfor-
tunately, the second bracket is not compatible with the symplectic bracket and therefore
the method fails. We overcome this difficulty by constructing master symmetries.
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Master symmetries were first introduced by Fokas and Fuchssteiner in [6] in connection
with the Benjamin-Ono equation. Then in W. Oevel and B. Fuchssteiner [11], a master
symmetry was found for the Kadomtsev-Petviashvili equation. General theory of master
symmetries is discussed in Fuchssteiner [7].

Finally, in section 3, the method of the Lie theory of extended groups is applied to the
Maxwell-Bloch equations. The calculations follow the spirit of [9].

Now a few words about the Maxwell-Bloch system. This system is obtained by applying
S1 reduction to an invariant subsystem of a dynamical system on C3. In [5] it is shown
that the system is bi-Hamiltonian and that it possesses several inequivalent Lie-Poisson
structures parametrized by classes of orbits in the group SL(2, R). In [16] the dynamics
and Poisson structures of the real Maxwell-Bloch equations are studied with one control
around the x2- axis. We give a sketch of the results in [5] in order to make the presentation
self-contained. We begin by considering the following Hamiltonian on C3

H(u, v, w) = −1
2
(ūvw + uv̄w̄) (1)

The five-dimensional Maxwell-Bloch system [15] is obtained by reducing system (1)
through the S1 group action. Using a change of variables, the system becomes

ẋ = y

ẏ = xz

ż = −1
2
(x̄y + xȳ) . (2)

The real Maxwell-Bloch equations are obtained by restricting to real-valued x and y.
Thus, the dynamics of this invariant subsystem is confined to the zero level surface of the
Hamiltonian function H in (1) with coordinates x1 = Re(x), x2 = Re(y), and x3 = z.
The real Maxwell-Bloch equations are:

ẋ1 = x2

ẋ2 = x1x3

ẋ3 = −x1x2. (3)

So the system arises as an invariant subsystem of the Maxwell-Bloch equations for optical
traveling-wave pulses in two-level media, a five (real) dimensional system on C2×R. The
later system itself originates from the 2:1:1 resonant nonlinear oscillator system (1) on
C3. Equations (3) also appear as the large–Rayleigh–number limit of the famous Lorentz
system; see Sparrow [17].

Equations (3) can be written as

ẋ = ∇H1 ×∇H2, (4)

where H1 = 1
2(x2

2 +x2
3), and H2 = x3 + 1

2x2
1 are the two conserved quantities. Equation (4)

implies that the system is bi-Hamiltonian. In this paper, we obtain a new Lax pair and a
new bi-Hamiltonian formulation. In fact, using the master symmetries, one can generate
an infinite sequence of Hamiltonian structures. The theory of bi-Hamiltonian systems was
developed by F. Magri [10].
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Equation (4) may be re-expressed as

ẋ = ∇H ×∇C, (5)

where H and C are SL(2, R) combinations of H1 and H2. In other words, H = αH1+βH2,
C = µH1 + νH2, with αν − βµ = 1. Then equations (5) are equivalent to (4). The Lie-
Poisson structure of the system is easy to obtain. In local coordinates it is given by

{x1, x2} = (ν + µx3)
{x1, x3} = µx2

{x2, x3} = νx1 . (6)

The corresponding Hamiltonian vector fields satisfy the following bracket relations

[X1, X2] = −µX3 (7)
[X1, X3] = µX2 (8)
[X2, X3] = −νX1 . (9)

This Lie algebra depends on the two parameters µ and ν.

2 Bi-Hamiltonian structure and master-symmetries

The real Maxwell-Bloch equations can be written as a Lax pair:

L̇ = [B,L], (10)

where

L =

(
x3

1√
2
(x2 − 1

2x2
1)

1√
2
(x2 + 1

2x2
1)

1
2x2

1

)
(11)

B =

(
−x1 − 1√

2
x1

1√
2
x1 0

)
. (12)

Then H1 = TrL and H2 = 1
2TrL2 are constants of motion and

H1 = x3 +
1
2
x2

1 (13)

H2 =
1
2
x2

2 +
1
2
x2

3. (14)

We define two Poisson brackets π1 and π2 as follows: π1 is given by

{x1, x2}1 = 1
{x1, x3}1 = 0
{x2, x3}1 = x1 (15)

and π2 is given by

{x1, x2}2 = −x3

{x1, x3}2 = x2

{x2, x3}2 = 0. (16)
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Then we have

π1∇H2 = π2∇H1 (17)

i.e, a bi–Hamiltonian system. For π1 bracket, H2 is the Hamiltonian and H1 is the Casimir.
For π2 bracket H1 is the Hamiltonian and H2 is the Casimir.

If the vector

~v = τ
∂

∂t
+ A1

∂

∂x1
+ A2

∂

∂x2
+ A3

∂

∂x3
(18)

is a Lie point symmetry, then the following equations have to be satisfied:

Ȧ1 − τ̇ ẋ1 −A2 = 0
Ȧ2 − τ̇ ẋ2 − x1A3 − x3A1 = 0
Ȧ3 − τ̇ ẋ3 + x1A2 + x2A1 = 0. (19)

One solution is the vector

~X = −t
∂

∂t
+ x1

∂

∂x1
+ 2x2

∂

∂x2
+ 2x3

∂

∂x3
. (20)

We can easily check that ~X is actually a conformal symmetry satisfying

~X(H1) = 2H1

~X(H2) = 4H2

L ~Xπ1 = 3π1

L ~Xπ2 = π2. (21)

Also the spatial part of ~X is a master symmetry, as we should expect. There are also
master symmetries sending π1 to π2. These are given by

~Xp = p1
∂

∂x1
+ p2

∂

∂x2
+ p3

∂

∂x3
, (22)

where

p1 = k1x1 + k2x2 + k3x3

p2 = −k1x2 + k3x1x2 − x2x3

p3 = −k1x
2
1 − k2x1x2 +

1
2
x2

2 − k3x1x3 +
1
2
x2

3. (23)

For k1 = 1 and k2 = k3 = 0, we get

~X1 = x1
∂

∂x1
+ (−x2 − x2x3)

∂

∂x2
+

(
−x2

1 +
x2

2

2
+

x2
3

2

)
∂

∂x3
. (24)

Similarly we have

~X2 = x2
∂

∂x1
− x2x3

∂

∂x2
+

(
−x1x2 +

x2
2

2
+

x2
3

2

)
∂

∂x3
(25)
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and

~X3 = x3
∂

∂x1
+ (x1x2 − x2x3)

∂

∂x2
+

(
x2

2

2
− x1x3 +

x2
3

2

)
∂

∂x3
. (26)

The vector fields ~X1, ~X2 and ~X3 all send π1 to π2 and H1 to H2. The master symmetries
can be used to generate higher Poisson brackets. For example, one can define a quadratic
bracket by taking the Lie derivative of π2 in the direction of X1:

{x1, x2} = 3x2
3 − x2

2 − 2x2
1

{x1, x3} = 4x2 + 2x2x3

{x2, x3} = −4x1x3 (27)

There is also a symplectic realization of the system. In R4 with coordinates (q1, q2, p1, p2),
we take as Hamiltonian

H =
1
2
p2
1 +

1
2
p2
2 +

1
8
q4
1 −

1
2
q2
1p2. (28)

We have Hamilton’s equations

q̇1 = p1 (29)

q̇2 = p2 −
1
2
q2
1 (30)

ṗ1 = q1p2 −
1
2
q3
1 (31)

ṗ2 = 0. (32)

The mapping F : R4 → R3

F (q1, q2, p1, p2) = (q1, p1,−
1
2
q2
1 + p2) = (x1, x2, x3) (33)

gives the original Maxwell-Bloch equations

ẋ1 = q̇1 = p1 = x2 (34)

ẋ2 = ṗ1 = q1(p2 −
1
2
q2
1) = x1x3 (35)

ẋ3 = −q1p1 = −x1x2. (36)

The symplectic bracket is mapped onto the π1 bracket:

{x1, x2}1 = {q1, p1} = 1 (37)

{x1, x3}1 = {q1,−
1
2
q2
1 + p2} = 0 (38)

{x2, x3}1 = {p1,−
1
2
q2
1 + p2} = q1 = x1. (39)

We also have
1
2
x2

2 +
1
2
x2

3 = H (40)
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and

x3 +
1
2
x2

1 = p2 (41)

which is conserved.
The bracket π2 is obtained as follows. Define a bracket s1

{q1, p1}s1 =
1
2
q2
1 − p2

{p1, p2}s1 = p2q1 −
1
2
q3
1

{q1, p2}s1 = p1

{q2, p2}s1 = p2 −
1
2
q2
1

{q2, p1}s1 = p1. (42)

Then we have the relations

{x1, x2} = {q1, p1}s1 =
1
2
q2
1 − p2 = −x3 (43)

{x1, x3} = {q1,−
1
2
q2
1 + p2}s1 = {q1, p2}s1 = p1 = x2 (44)

{x2, x3} = {p1,−
1
2
q2
1 + p2}s1 = 0. (45)

Taking H = p2 as Hamiltonian, we obtain again Hamilton’s equations (29)-(32).

If we represent by s0 the symplectic bracket, then we have the Lenard–type relations:

s0∇H = s1∇p2, (46)

but the two brackets are not compatible and they do not generate a recursion operator.

3 Group Symmetries

In this section, we study the symmetries of Newton’s equations generated by the Hamil-
tonian

H =
1
2
p2
1 +

1
2
p2
2 +

1
8
q4
1 −

1
2
q2
1p2. (47)

From Hamilton’s equations (29)-(32), we get Newton’s equations by differentiation:

q̈1 − q1q̇2 = 0 (48)

q̈2 + q1q̇1 = 0. (49)

The above are also Lagrange’s equations generated by the Lagrangian

L =
q̇1

2

2
+

q̇2
2

2
+

1
2
q2
1 q̇2 . (50)
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If

~v = ξ(q1, q2, t)
∂

∂t
+ η1(q1, q2, t)

∂

∂q1
+ η2(q1, q2, t)

∂

∂q2

, the action of its second prolongation on Newton’s equations gives:

η̈1 − q̇1ξ̈ − q1q̇2ξ̇ − q1η̇2 − q̇2η1 = 0 (51)

η̈2 − ξ̈q̇2 + q1ξ̇q̇1 + q1η̇1 + q̇1η1 = 0 (52)

Equations (51),(52) are the conditions for ~v to be a Lie point symmetry for Newton’s
equations. Expanding ξ̇, ξ̈, η̇1, η̈1, η̇2, η̈2, we will have:

η1,tt + 2η1,tq1 q̇1 + 2η1,tq2 q̇2 + η1,q1q1 q̇1
2 + 2η1,q1q2 q̇1q̇2 + η1,q2q2 q̇2

2

+η1,q1q1q̇2 − η1,q2q1q̇1 − ξttq̇1 − 2ξtq1 q̇1
2 − 2ξtq2 q̇2q̇1

−ξq1q1 q̇1
3 − 2ξq1q2 q̇1

2q̇2 − ξq2q2 q̇2
2q̇1 − 2ξq1q1q̇1q̇2 + ξq2q1q̇1

2 (53)
−ξtq1q̇2 − ξq2q1q̇2

2 − η2,tq1 − η2,q1q1q̇1 − η2,q2q1q̇2 − η1q̇2 = 0

and

η2,tt + 2η2,tq1 q̇1 + 2η2,tq2 q̇2 + η2,q1q1 q̇1
2 + η2,q2q2 q̇2

2 + 2η2,q1q2 q̇1q̇2

+η2,q1q1q̇2 − η2,q2q1q̇1 − q̇2ξtt − 2ξtq1 q̇1q̇2 − 2ξtq2 q̇2
2

−ξq1q1 q̇1
2q̇2 − ξq2q2 q̇2

3 − 2ξq1q2 q̇1q̇2
2 − ξq1q1q̇2

2 + 2ξq2q1q̇1q̇2 (54)
+q1q̇1ξt + q1q̇1

2ξq1 + q1η1t + q1q̇1η1,q1 + q1q̇2η1,q2 + q̇1η1 = 0.

Equations (53) and (54) must be satisfied identically in t, q1, q2, q̇1, q̇2, functions that are
all independent. Equating the coefficients of q̇1

3, q̇1
2q̇2, q̇1q̇2

2 to zero in both (53) and (54)
and doing standard manipulations as in [9], for example, we obtain the overall result:

ξ = −c1t + c2 (55)
η1 = c1q1 (56)
η2 = c1q2 + c3 (57)

where c1, c2, c3 are all constants.
For c1 = c3 = 0, but c2 different than zero, we get the time translation symmetry which

generates the conservation of energy and for c3 different than zero we have translation in
the cyclic q2 direction which is related to the conservation of p2. Finally for c2 = c3 = 0
and c1 different than zero, we have the symmetry

~v = −t
∂

∂t
+ q1

∂

∂q1
+ q2

∂

∂q2
(58)

The symmetries of Newton’s equations form a 3-dimensional Lie algebra generated by

~Y1 = −t
∂

∂t
+ q1

∂

∂q1
+ q2

∂

∂q2
(59)

~Y2 =
∂

∂t
(60)

~Y3 =
∂

∂q2
(61)
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with Lie algebra bracket multiplication given by:[
~Y1, ~Y2

]
= ~Y2[

~Y1, ~Y3

]
= − ~Y3[

~Y2, ~Y3

]
= 0 . (62)

We can now find, which of the above Lie point symmetries are also variational sym-
metries using the Lagrangian L and Noether’s theory: Both ~Y2 and ~Y3 are variational
symmetries since they satisfy the condition

pr(1)~v(L) + L div(ξ) = 0, (63)

which is the necessary and sufficient condition for the vector ~v to be a variational symmetry.
On the other hand, ~Y1 is not a variational symmetry. Using the general theorem of Noether,
we can find the corresponding conserved quantities. For ~Y2 we have

Q1E1(L) + Q2E2(L) = −q̇1E1(L)− q̇2E2(L) = − d

dt

(
1
2
q̇1

2 +
1
2
q̇2

2
)

and so the conserved quantity is the Hamiltonian H as we should expect. Similarly for ~Y3

using again the above theorem, we can prove that the conserved quantity is the momentum
p2.
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