Similarity Reductions of the ZabolotskayaKhokhlov Equation with a Dissipative Term

Masayoshi TAJIRI
Department of Mathematical Sciences, College of Engineering, University of Osaka Prefecture, Sakai, Osaka, 593 Japan

Abstract

Similarity reductions of the Zabolotskaya-Khokhlov equation with a dissipative term to one-dimensional partial differential equations including Burgers' equation are investigated by means of Lie's method of infinitesimal transformation. Some similarity solutions of the Z-K equation are obtained.

1 Introduction

An approximation equation describing the propagation of a confined three-dimensional beam in a slightly nonlinear medium without dispersion or absorption was proposed by Zabolotskaya and Khokhlov [1]. The equation may be written as

$$
\begin{equation*}
u_{x t}-u_{x}^{2}-u u_{x x}-u_{y y}=0 . \tag{1.1}
\end{equation*}
$$

which is known as the Zabolotskaya-Khokhlov (Z-K) equation. This equation enables to analyze the beam deformation associated with the nonlinear properties of the medium. The infinitesimal symmetries and exact solutions of the Z-K equation have been investigated by many authors $[2,3]$.

Recently, the general derivation of the Z-K equation was given by Taniuti [4]. He has shown that multidimensional systems of nonlinear evolutional equations are reducible to the Kadomtsev-Petviashvili (K-P) equation and the Zabolotskaya-Khokhlov equation with a dissipative term in the weakly dispersive and weakly dissipative cases, respectively, by means of an extension of the reductive perturbation method to quasi one-dimensional propagation. The K-P equation and Z-K equation with dissipative term are two-dimensional extensions of the Korteweg-de Vries and Burgers' equations, respectively. The solution of obliquely interacting N traveling waves to the equation was obtained by Murakami [5].

The purpose of this paper is to investigate the similarity reductions of the Z-K equation with a dissipative term to one-dimensional partial differential equations including Burgers' equation and to represent some exact solutions of the Z-K equation.

2 Reductions of the Zabolotskaya-Khokhlov Equation with a Dissipative Term

The Z-K equation with a dissipative term may be written as

$$
\begin{equation*}
u_{x t}+u_{x}^{2}+u u_{x x}+\lambda\left(u_{x x x}\right)+\mu\left(u_{y y}\right)=0, \tag{2.1}
\end{equation*}
$$

where λ and μ are some constants. Now, we consider a one-parameter (ε) Lie's group of infinitesimal transformation in the (x, y, t, u) space

$$
\left.\begin{array}{l}
x^{*}=x+\varepsilon X(x, y, t, u)+O\left(\varepsilon^{2}\right), \\
y^{*}=y+\varepsilon Y(x, y, t, u)+O\left(\varepsilon^{2}\right), \tag{2.2b}\\
t^{*}=t+\varepsilon T(x, y, t, u)+O\left(\varepsilon^{2}\right), \\
u^{*}=\Theta(x, y, t)+\varepsilon U(x, y, t, u)+O\left(\varepsilon^{2}\right), \\
u^{*} x^{*}=\Theta_{x}+\varepsilon\left[U_{x}\right]+O\left(\varepsilon^{2}\right), \\
u^{*} x^{*} x^{*}=\Theta_{x x}+\varepsilon\left[U_{x x}\right]+O\left(\varepsilon^{2}\right), \\
u^{*} x^{*} t^{*}=\Theta_{x t}+\varepsilon\left[U_{x t}\right]+O\left(\varepsilon^{2}\right), \\
u^{*} y^{*} y^{*}=\Theta_{y y}+\varepsilon\left[U_{y y}\right]+O\left(\varepsilon^{2}\right), \\
u^{*} x^{*} x^{*} x^{*} x^{*}=\Theta_{x x x}+\varepsilon\left[U_{x x x}\right]+O\left(\varepsilon^{2}\right),
\end{array}\right\}
$$

where $\Theta(x, y, t)$ is a solution of the Z-K equation (2.1) and total derivatives $\left[U_{x}\right],\left[U_{x x}\right]$, $\left[U_{x t}\right],\left[U_{y y}\right]$, and $\left[U_{x x x}\right]$ in eq.(2.2b) can be defined from eq.(2.2a) $[6,7]$. Assuming that eq.(2.1) is invariant under the transformations (2.2a) and (2.2b), we get the following relation from the coefficient of the first order of ε,

$$
\begin{equation*}
\left[U_{t x}\right]+2\left[U_{x}\right] \Theta_{x}+U \Theta_{x x}+\left[U_{x x}\right] Q+\lambda\left[U_{x x x}\right]+\mu\left[U_{y y}\right]=0 \tag{2.3}
\end{equation*}
$$

The solutions of eq.(2.3) give the infinitesimal elements (X, Y, T, U) leaving invariant eq.(2.1). ¿From eq.(2.3), we find the following infinitesimals:

$$
\left.\begin{array}{l}
X=\alpha x+Q^{\prime}(t) y+R(t), \tag{2.4}\\
Y=\frac{3}{2} \alpha y-2 \mu Q(t), \\
T=2 \alpha t+\beta, \\
U=-\alpha u+Q^{\prime \prime}(t) y+R^{\prime}(t),
\end{array}\right\}
$$

which are similar in form to the transformation for the Kadomtsev-Petviashvilli and twodimensional Benjamin-Ono equations [8-10,], where $Q(t)$ and $R(t)$ are arbitrary functions of t, and $Q^{\prime}(t)=d Q(t) / d t, Q^{\prime \prime}(t)=d^{2} Q(t) / d t^{2}$, and $R^{\prime}(t)=d R(t) / d t$. Thus, the similarity variables and form are given by solving the characteristic equation [6],

$$
\begin{equation*}
\frac{d x}{X}=\frac{d y}{Y}=\frac{d t}{T}=\frac{d u}{U} \tag{2.5}
\end{equation*}
$$

The calculated examples are represented as follows.
Case (A) $\alpha=\beta=0$.
From the integrals of three equations, $d t / T=d x / X, d x / X=d y / Y$ and $d u / U=d y / Y$, we obtain

$$
\left\{\begin{array}{l}
\rho=t, \quad \eta=x+\frac{Q^{\prime}(t) y^{2}+2 R(t) y}{4 \mu Q(t)} \tag{2.6}\\
u=-\frac{Q^{\prime \prime}(t) y^{2}+2 R^{\prime}(t) y}{4 \mu Q(t)}+H(\rho, \eta)
\end{array}\right.
$$

Substituting eq.(2.6) into eq.(2.1), we have the following equation

$$
\begin{equation*}
\frac{Q^{\prime}(t)}{2 Q(t)} H_{\eta}+H_{\eta \rho}+\frac{R(t)^{2}}{4 \mu Q(t)^{2}} H_{\eta \eta}+H_{\eta}^{2}+H H_{\eta \eta}+\lambda H_{\eta \eta \eta}-\frac{Q^{\prime \prime}(t)}{2 Q(t)}=0 \tag{2.7}
\end{equation*}
$$

Integrating eq.(2.7) with respect to η, we have

$$
\begin{equation*}
\frac{Q^{\prime}}{2 Q} H+H_{\rho}+\frac{R^{2}}{4 \mu Q^{2}} H_{\eta}+H H_{\eta}+\lambda H_{\eta \eta}-\frac{Q^{\prime \prime}}{2 Q} \eta=S(\rho) \tag{2.8}
\end{equation*}
$$

where $S(\rho)$ is an arbitrary function of ρ, moreover, by transformation,

$$
\left\{\begin{array}{l}
\tau^{\prime}=\rho, \quad \xi^{\prime}=\frac{\eta}{\sqrt{Q}} \tag{2.9}\\
H=\frac{1}{\sqrt{Q}}\left[G(\rho, \eta)+\frac{Q^{\prime}}{2 \sqrt{Q}} \eta-\frac{R^{2}}{4 \mu Q^{3 / 2}}\right]
\end{array}\right.
$$

eq.(2.8) is rewritten as

$$
\begin{equation*}
Q\left(\tau^{\prime}\right) G_{\tau^{\prime}}+\frac{Q^{\prime}\left(\tau^{\prime}\right)}{2} G+G G_{\xi^{\prime}}+\lambda G_{\xi^{\prime} \xi^{\prime}}=0 \tag{2.10}
\end{equation*}
$$

where the boundary condition, $G\left(\tau^{\prime}, \xi^{\prime}=\infty\right)=0$, has been imposed. Choosing an arbitrary function $Q(t)$ constant, $Q(t)=1$, and $\tau=-\tau^{\prime} / \lambda, \quad \xi=-\xi^{\prime} / \lambda$, we have Burgers' equation,

$$
\begin{equation*}
G_{\tau}+G G_{\xi}-G_{\xi \xi}=0 \tag{2.11}
\end{equation*}
$$

Thus the Z-K equation is reduced to Burgers' equation by the similarity transformation

$$
\left\{\begin{align*}
\tau & =-\frac{t}{\lambda}, \quad \xi=-\frac{x+R(t) y / 2 \mu}{\lambda} \tag{2.12}\\
u & =-\frac{R^{\prime}(t) y+R(t)^{2} / 2}{2 \mu}+G(\tau, \xi)
\end{align*}\right.
$$

Case (B) $\quad \alpha=0$ and $\beta \neq 0$
Following the same way as case (A), we get the similarity variables and form as follows

$$
\left\{\begin{align*}
\tau & =y+\frac{2 \mu}{\beta} \int Q(t) d t \tag{2.13}\\
\xi & =\sqrt{|\mu|}\left\{x-\frac{Q(t)}{\beta} y-\frac{2 \mu}{\beta^{2}} \int Q(t)^{2} d t-\frac{1}{\beta} \int R(t) d t\right\} \\
u & =\frac{1}{\beta}\left\{Q^{\prime}(t) y+\frac{\mu}{\beta} Q(t)^{2}+R(t)-\beta \frac{\mu}{|\mu|}\right\}+G(\tau, \xi)
\end{align*}\right.
$$

Substituting eq.(2.13) into eq.(2.1), we have the following equations

$$
\begin{equation*}
G_{\tau \tau}-G_{\xi \xi}+\frac{1}{2}\left(G^{2}\right)_{\xi \xi}+\lambda \sqrt{\mu} G_{\xi \xi \xi}=0, \quad: \text { for } \mu>0 \tag{2.14a}
\end{equation*}
$$

$$
\begin{equation*}
G_{\tau \tau}-G_{\xi \xi}-\frac{1}{2}\left(G^{2}\right)_{\xi \xi}-\lambda \sqrt{|\mu|} G_{\xi \xi \xi}=0, \quad: \text { for } \mu<0 \tag{2.14b}
\end{equation*}
$$

Case(C) $\quad \alpha \neq 0$ and $\beta \neq 0$
In the same way, we can obtain

$$
\begin{aligned}
\tau= & \frac{y}{\left(t+\frac{\beta}{2 \alpha}\right)^{3 / 4}}+\frac{\mu}{\alpha} \int \frac{Q(t)}{\left(t+\frac{\beta}{2 \alpha}\right)^{7 / 4}} d t, \\
\xi= & \frac{x}{\left(t+\frac{\beta}{2 \alpha}\right)^{1 / 2}}-\left\{\frac{1}{2 \alpha\left(t+\frac{\beta}{2 \alpha}\right)^{3 / 4}} \int \frac{Q^{\prime}(t)}{\left(t+\frac{\beta}{2 \alpha}\right)^{3 / 4}} d t\right\} y \\
& \left.-\frac{\mu}{2 \alpha^{2}} \iint \frac{Q(t)^{2}}{\left(t+\frac{\beta}{2 \alpha}\right)^{5 / 2}} d t+\frac{3}{8}\left(\int \frac{Q(t)}{\left(t+\frac{\beta}{2 \alpha}\right)^{7 / 4}} d t\right)^{2}\right\}-\frac{1}{2 \alpha} \int \frac{R(t)}{\left(t+\frac{\beta}{2 \alpha}\right)^{3 / 2}} d t, \\
u= & \left\{\frac{Q^{\prime}(t)}{2 \alpha\left(t+\frac{\beta}{2 \alpha}\right)^{2}}-\frac{1}{8 \alpha} \frac{1}{\left(t+\frac{\beta}{2 \alpha}\right)^{5 / 4}} \int \frac{Q^{\prime}(t)}{\left(t+\frac{\beta}{2 \alpha}\right)^{3 / 4}} d t\right\} y \\
& +\frac{\mu}{4 \alpha^{2}\left(t+\frac{\beta}{2 \alpha}\right)^{1 / 2}}\left\{\frac{Q(t)^{2}}{\left(t+\frac{\beta}{2 \alpha}\right)^{3 / 2}}+\int \frac{Q(t)^{2}}{\left(t+\frac{\beta}{2 \alpha}\right)^{5 / 2}} d t-\frac{3}{16}\left(\int \frac{Q(t)}{\left(t+\frac{\beta}{2 \alpha}\right)^{7 / 4}} d t\right)^{2}\right\} \\
& +\frac{R(t)}{2 \alpha\left(t+\frac{\beta}{2 \alpha}\right)}+\frac{1}{4 \alpha\left(t+\frac{\beta}{2 \alpha}\right)^{1 / 2}} \int \frac{R(t)}{\left(t+\frac{\beta}{2 \alpha}\right)^{3 / 2}} d t+\frac{1}{\left(t+\frac{\beta}{2 \alpha}\right)^{1 / 2}} G(\tau, \xi) .
\end{aligned}
$$

Then, eq.(2.1) becomes

$$
\begin{equation*}
\mu G_{\tau \tau}-G_{\xi}-\frac{3}{4} \tau G_{\tau \xi}-\frac{1}{2} \xi G_{\xi \xi}+\frac{1}{2}\left(G^{2}\right)_{\xi \xi}+\lambda G_{\xi \xi \xi}=0 \tag{2.15}
\end{equation*}
$$

3 Similarity Solutions to the Z-K Equation with a Dissipative Term

The solutions of Burgers' equation (2.11), eqs.(2.14) and (2.15) are transformed to the solutions of the Z-K equation by the similarity transformations. In this section, we consider the solutions of the Z-K equation which can be specifically obtained by substituting the solutions of Burgers' equation into similarity transformation (2.12).

3.1 Linearization of the Z-K Equation with a Dissipative Term

It is well known that Burgers' equation can be reduced to a linear heat equation by the Cole-Hopf transformation [11]. By using the results of the previous section, the Z-K equation (2.1) is reduced to

$$
\begin{equation*}
F_{\tau}-F_{\xi \xi}=0 \tag{3.1}
\end{equation*}
$$

by the transformation

$$
\begin{equation*}
u=B(y, t)-2 \frac{F_{\xi}(\tau, \xi)}{F(\tau, \xi)}, \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
B(y, t)=-\left\{R^{\prime}(t) y+R(t)^{2} / 2\right\} / 2 \mu \tag{3.3}
\end{equation*}
$$

τ and ξ are given by eq.(2.12).
Moreover, as the ordinary differential equation governing similarity solutions of Burgers' equation is any one of the 50 canonical types of the second-order differential equations having no movable critical points, which have been listed by Painleve and Ganbier[12] and that they can be reduced to the Riccati equation [12], the Z-K equation is also reduced to the Riccati equation by the similarity transformation.

3.2 Solution expressed by the Bessel function

Substituting the solution of Burgers' equation [13, 14], which is expressed by the Bessel function, into eq.(2.12), we have

$$
\left\{\begin{align*}
u & =B(y, t)-\frac{\gamma}{\lambda} t+\delta-\sqrt{2 \gamma \zeta} \frac{J_{-2 / 3}\left(\frac{\sqrt{2 \gamma}}{3} \zeta^{3 / 2}\right)}{J_{1 / 3}\left(\frac{\sqrt{2 \gamma}}{3} \zeta^{3 / 2}\right)} \tag{3.4}\\
\zeta & =-\frac{1}{\lambda}\left(x+\frac{R(t)}{2 \mu} y\right)-\frac{\gamma}{2 \lambda^{2}} t-\frac{\delta}{\lambda} t
\end{align*}\right.
$$

where J denotes the Bessel function and γ and δ are arbitrary constants. As a special case, the similarity variable with $\gamma=0$ and $R(t)=c=$ constant corresponds to progressive waves in the background $(-c / 4 \mu+\delta)$, in which the shock-wave solution is contained.

3.3 Similar-type solution

$$
\left\{\begin{align*}
u & =B(y, t)+\zeta+\frac{\lambda a}{t} \tanh \frac{a}{2}\left(\zeta+c^{\prime}\right) \tag{3.5}\\
\zeta & =\frac{x+R(t) y / 2 \mu}{t}
\end{align*}\right.
$$

which expresses the shock-wave solution moving in a nonsteady and nonuniform background, where a and c are arbitrary constants.

4 Conclusion

The similarity reduction of the Z-K equation with a dissipative term has been studied by the Lie's method. The Z-K equation is reduced to one-dimensional differential equations including Burgers' equation by the similarity transformations. Some exact solutions were obtained by substituting the solutions of Burgers' equation into the similarity transformations.

References

[1] Zabolotskaya E. A. and Khokhlov R. V., Quasi-Plane waves in the Nonlinear Acoustics of Confined Beams, Sov. Phys. Acoustics, 1969, V.15, N 1, 35-40.
[2] Fushchych W., Shtelen W. and Serov N., Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics, Dordrecht, Kluwer Academic Publishers, 1993.
[3] Euler N. and Steeb W-H., Continuous Symmetries, Lie Algebras and Differential Equations, Bibliographisches Institut, Mannheim, Germany, 1992.
[4] Taniuti T., Reductive perturbation method for quasi one-dimensional nonlinear wave propagation I, Wave motion, 1990, V.12, N 4, 373-383.
[5] Murakami Y., Obliquely interacting N traveling waves: Exact solutions of some two-dimensional nonlinear diffusion equation, J. Phys. Soc. Jpn., 1990, V.59, N 1, 1-4.
[6] Bluman G.M. and Cole J.D., Similarty Methods for Differential Equations, Springer, Berlin, 1974.
[7] Olver P.J., Applications of Lie Groups to Differencial Equations, Springer, New York, 1986.
[8] Tajiri M., Nishitani T. and Kawamoto S., Similarity solutions of the Kadomtsev-Petviashvili equation, J. Phys. Soc. Jpn., 1982, V.51, N7, 2350-2356.
[9] Schwarz F., Symmetries of the two-dimensional Korteweg-de Vries equatuion, J. Phys. Soc. Jpn., 1982, V.51, N 8, 2387-2388.
[10] Tajiri M., Similarity reductions of the one and two-dimensional Benjamin-Ono equations, J. Phys. Soc. Jpn., 1987, V.56, N 4, 1327-1333.
[11] Hopf E., The partial differential equation $u_{t}+u u_{x}=u_{x x}$, Comm Pure Appl. Math., 1950, V.3, 201230;
Cole J., On a quasi-linear parabolic equation occuring in aerodynamics, Q. Appl. Math., 1951, V.9, 225-236.
[12] Ince E. L., Ordinary Differential Equations, Dover, New York, 1944.
[13] Chester W., Continuous transformations and differential equations, J. Inst. Math. Applics., 1977, V.19, 343-376.
[14] Tajiri M., Kawamoto S. and Thushima K., Reduction of Burgers' equation to Riccati equation, Math. Japonica, 1983, V.28, N 1, 125-133.

