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Abstract

Similarity reductions of the Zabolotskaya-Khokhlov equation with a dissipative term
to one-dimensional partial differential equations including Burgers’ equation are in-
vestigated by means of Lie’s method of infinitesimal transformation. Some similarity
solutions of the Z-K equation are obtained.

1 Introduction

An approximation equation describing the propagation of a confined three-dimensional
beam in a slightly nonlinear medium without dispersion or absorption was proposed by
Zabolotskaya and Khokhlov [1]. The equation may be written as

Ut — Ug? — Ullgy — Uyy = 0. (1.1)

which is known as the Zabolotskaya-Khokhlov (Z-K) equation. This equation enables to
analyze the beam deformation associated with the nonlinear properties of the medium.
The infinitesimal symmetries and exact solutions of the Z-K equation have been investi-
gated by many authors [2, 3].

Recently, the general derivation of the Z-K equation was given by Taniuti [4]. He has
shown that multidimensional systems of nonlinear evolutional equations are reducible to
the Kadomtsev-Petviashvili (K-P) equation and the Zabolotskaya-Khokhlov equation with
a dissipative term in the weakly dispersive and weakly dissipative cases, respectively, by
means of an extension of the reductive perturbation method to quasi one-dimensional prop-
agation. The K-P equation and Z-K equation with dissipative term are two-dimensional
extensions of the Korteweg-de Vries and Burgers’ equations, respectively. The solution of
obliquely interacting N traveling waves to the equation was obtained by Murakami [5].

The purpose of this paper is to investigate the similarity reductions of the Z-K equation
with a dissipative term to one-dimensional partial differential equations including Burgers’
equation and to represent some exact solutions of the Z-K equation.
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2 Reductions of the Zabolotskaya-Khokhlov Equation
with a Dissipative Term

The Z-K equation with a dissipative term may be written as
Ugt + Ug® + Ulgy + Mugzz) + p(uyy) =0, (2.1)

where A and p are some constants. Now, we consider a one-parameter (¢) Lie’s group of
infinitesimal transformation in the (x,y,t, u) space

¥ =z +e X(z,y,t,u) + O(e?),
y*=y+eY(z,y,tu)+ 02,
tr=t+e T(ﬁ,y,t, u) + 0(82)3

u* = O(x,y,t) +e Ux,y,t,u) + O(e?),

Uy = Oy + ¢ [Uy] + O(e?),

U prar = Oy + € [Una] + O(€2),

U e = Ot + € [Upi] + O(£2), (2.2b)

uyryr = Oyy + € [Uyy] + O(e?),

UWprgrgr = Opge +€ [Ux:px] + 0(62)’
where O(z,y,t) is a solution of the Z-K equation (2.1) and total derivatives [Us|, [Uzs],
[Uzt), [Uyyl, and [Uyzz] in eq.(2.2b) can be defined from eq.(2.2a) [6, 7]. Assuming that
eq.(2.1) is invariant under the transformations (2.2a) and (2.2b), we get the following
relation from the coefficient of the first order of ¢,

[Uz] +2 [Ug] ©3 +UBOgy + [Uzz] Q + A [Ugaz] + pt [Uyy] = 0. (2.3)

The solutions of eq.(2.3) give the infinitesimal elements (X,Y,T,U) leaving invariant
eq.(2.1). ;From eq.(2.3), we find the following infinitesimals:

X =ax+ Q' (t)y + R(t),
— 3y —
T =2at + 3,
U=—aou+Q"(t)y+ R(t),
which are similar in form to the transformation for the Kadomtsev-Petviashvilli and two-
dimensional Benjamin-Ono equations [8-10,], where (Q(¢) and R(t) are arbitrary functions
of t,and Q'(t) = dQ(t)/dt, Q" (t) = d*Q(t)/dt?, and R'(t) = dR(t)/dt. Thus, the similarity
variables and form are given by solving the characteristic equation [6],
de _dy _dt _du
X Y T U’
The calculated examples are represented as follows.
Case (A) a=p=0.
From the integrals of three equations, dt/T = dz/X, dz/X = dy/Y and du/U = dy/Y,

we obtain / ,
p—t. n:x+Q(t)y +2R(t)3/,

4pQ(t)

(2.2a)

(2.5)

u =
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Substituting eq.(2.6) into eq.(2.1), we have the following equation

Q'(t) (1) 2 Q"(t)
H,+H ——H H:+ HH, AH, =0. 2.7
QQ(t) n + np + 4NQ(t)2 m + n + + nmmn QQ(t) ( )
Integrating eq.(2.7) with respect to n , we have
QI R2 QII
+H,+ ——=H,+ HH, H 2.
where S(p) is an arbitrary function of p, moreover, by transformation,
T=p &=-5
) \/@7
Ve TP TR i
eq.(2.8) is rewritten as
/ /
Q(T’)GT/ + Q (2T )G + GG@/ + )\Gg/g/ =0 (2.10)
where the boundary condition, G(7/,§’ = oo) = 0, has been imposed. Choosing an

arbitrary function Q(t) constant, Q(t) = 1, and 7 = —7'/)\, & = —¢&'/\, we have Burgers’
equation,
Gr+ GGg — Ggg =0. (2.11)

Thus the Z-K equation is reduced to Burgers’ equation by the similarity transformation

T:_E f__:L*+R(1E)y/2u
A (2.12)
oo POUTROR o

Case (B) a=0and 3#0

Following the same way as case (A), we get the similarity variables and form as follows
21
AETE
5 (t)dt

\f{ t /Q dt——/R dt} (2.13)

{ y+c9>+RO—ﬁZ}+mna

Substituting eq.(2.13) into eq.(2.1), we have the following equations

1
Grr — Gee + §(G2)§5 + A\ /iGeee =0, :for >0 (2.14a)
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1, )
Grr — Ggg — i(G )55 — A/ ‘,M‘Gggg =0, :foru<O (2.14b)
Case(C) a#0and f#0

In the same way, we can obtain

y LM Q1)
e+ 2" o) v gy

. Q)
- (t+ £y {2a(t+ﬁ)3/4/(t+ﬂ)3/4dt}y

\]
I

2
t)? 3 ¢ 1 R(t
—ﬁ Q()S/th+8( Q(ﬁ)7/4dt> —%/ (ﬁ>3/2dt,
(t+ 35) (t+55) (t+ 35)
Q'(t) 1 1 Q'(t) dt
u= 3 2 @ 8 5/ 8 3/4
20(t + o) (t+4=) (t+35) )
z QW [ ew . 3 QW)
5 3\1/2 3/2 5\5/2 16 3 \7/4
4oy (t—i-%) (t+%) (t"‘@) (t‘i‘%)
R(t) 1 R(t) 1
20(t + ) * 3 1/2/ 3 st t 3 72 G (&)
% do(t + 57) (t+ 2-) (t+ 25)
Then, eq.(2.1) becomes
3 1 1
HGrr = Ge = 57Gre — S€Gee + 5(G?)66 + AGege = 0. (2.15)

3 Similarity Solutions to the Z-K Equation
with a Dissipative Term

The solutions of Burgers’ equation (2.11), eqs.(2.14) and (2.15) are transformed to the
solutions of the Z-K equation by the similarity transformations. In this section, we consider
the solutions of the Z-K equation which can be specifically obtained by substituting the
solutions of Burgers’ equation into similarity transformation (2.12).

3.1 Linearization of the Z-K Equation with a Dissipative Term

It is well known that Burgers’ equation can be reduced to a linear heat equation by the
Cole-Hopf transformation [11]. By using the results of the previous section, the Z-K
equation (2.1) is reduced to

F,—Fee=0 (3.1)

by the transformation
Fe(7,€)

u:B(y,t)—ZF(T g’

(3.2)
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where
B(y,t) = —{R'(t)y + R(t)*/2}/2u, (3.3)
7 and & are given by eq.(2.12).

Moreover, as the ordinary differential equation governing similarity solutions of Burgers’
equation is any one of the 50 canonical types of the second-order differential equations
having no movable critical points, which have been listed by Painleve and Ganbier[12] and
that they can be reduced to the Riccati equation [12], the Z-K equation is also reduced to
the Riccati equation by the similarity transformation.

3.2 Solution expressed by the Bessel function

Substituting the solution of Burgers’ equation [13, 14], which is expressed by the Bessel
function, into eq.(2.12), we have

g (V2VC3/2)
u= B(y,t) — %t—i—é - \/2fyg“2/3—\/%32,
R() (]51/3( 3 ¢ /) (3.4)
1 t Y
S S 7 ye L

where J denotes the Bessel function and v and § are arbitrary constants. As a special case,
the similarity variable with v = 0 and R(t) = ¢ = constant corresponds to progressive
waves in the background (—c/4p + 6), in which the shock-wave solution is contained.

3.3 Similar-type solution

Aa a
u=B(y,t)+{+ Ttanh§(f +c),
z + R(t)y/2p (3:5)
¢= T2
which expresses the shock-wave solution moving in a nonsteady and nonuniform back-
ground, where a and ¢ are arbitrary constants.

4 Conclusion

The similarity reduction of the Z-K equation with a dissipative term has been studied by
the Lie’s method. The Z-K equation is reduced to one-dimensional differential equations
including Burgers’ equation by the similarity transformations. Some exact solutions were
obtained by substituting the solutions of Burgers’ equation into the similarity transforma-
tions.
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