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Abstract
The Madelung representation ψ = u exp(iv) is considered for the d’Alembert equa-

tion 2nψ−F (|ψ|)ψ = 0 to develop a technique for finding exact solutions. We classify
the nonlinear function F for which the amplitude and phase of the d’Alembert equa-
tion are related to the solutions of the compatible d’Alembert–Hamiltonian system.
The equations are studied in n-dimensional Minkowski space.

We consider the following general nonlinear d’Alembert equation

2nψ − F (|ψ|)ψ = 0, (1)

in n-dimensional Minkowski space M(n − 1, 1), where F is a real smooth function of
|ψ| ≡

√
ψ∗ψ and

2n ≡
∂2

∂x2
0

−
n−1∑
j=1

∂2

∂x2
j

.

Here ψ∗ is the complex conjugate of the complex-valued function ψ. Equation (1) plays
a fundamental role in classical and quantum field theories. Exact solutions of (1), for
various nonlinear functions F , are essential for the development and interpretation of the
related physical theories as well as the testing of numerical schemes which are studied
for such equations. Many exact solutions of (1) were obtained by the use of Lie symme-
try methods (Fushchych and Serov 1983, Grundland et al 1984, Grundland et al 1987,
Grundland and Tuszynski 1987, Fushchych and Yehorchenko 1989, Fushchych et al 1993)
and conditional symmetry methods (Fushchych et al 1993). Note that most methods
used for constructing exact solutions of multidimensional partial differential equations in-
volves an Ansatz (or trail solution) or a transformation (local or nonlocal) which should
either reduce the equation to a more ‘solvable’ form, transform the equation (nonlocally)
to itself (auto-Bäcklund transformation), or keep the equation form invariant (symmetry
transformation).
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In this paper we relate the real functions u (amplitude) and v (phase), under the
Madelung representation

ψ(x) = u(x) exp(iv(x)), (2)

to the d’Alembert-Hamiltonian system

2nw = F1(w), (5nw)2 = F2(w). (3)

Here

(5na)(5nb) ≡
∂a

∂x0

∂b

∂x0
−

n−1∑
j=1

∂a

∂xj

∂b

∂xj
.

In Fushchych et al 1991, the necessary compatibility condition of system (3) is given. In
this paper we restrict ourselves to the following compatible n-dimensional system

2nw =
λN

w
, (5nw)2 = λ, (4)

where λ ∈ {−1, 1} and N ∈ {0, 1, . . . , n − 1}. System (4) admits the necessary condition
of compatibility. Our solutions of system (4) are listed in table 1. Note that

~aj · ~x ≡ aj0x0 − aj1x1 − · · · − aj(n−1)xn−1

~aj · ~bk ≡ aj0bk0 − aj1bk1 − · · · − aj(n−1)bk(n−1), etc.

Using representation (2) the d’Alembert equation (1) takes the form

2nu− u(5nv)2 − uF (u) = 0
u2nv + 2(5nu)(5nv) = 0. (5)

We consider two cases: amplitude as a function of phase, i.e., u = g(v), and phase as a
function of amplitude, i.e., v = g(u). Finally we make some comments on the treatment
of system (5) with no functional relations between the phase and amplitude, as well as the
application of this technique to other equations in mathematical physics. The results are
presented in the form of two Propositions which give the conditions on the real function g
for which the solutions of the compatible d’Alembert–Hamiltonian system (3) are related
to the nonlinear d’Alembert equation (1) under the Madelung representation (2). Some
examples are given to illustrate the method.

As a first case, let us assume that u = g(v). We can make the following

Proposition 1: System (5), with u = g(v), takes the form of the compatible system (4),
if and only if

g(v) = σ

(
ḟ(v)
fN (v)

)1/2

, f (v(x)) = w(x),

where

gg̈ − 2ġ2 − g2 − C2

λσ4
g6 exp

(
2
σ2

∫ v

g2(ξ)dξ
)
F (g) = 0
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for N = 1, and

gg̈ − 2ġ2 − g2 − 1
λσ4

g6
(

1−N

σ2

∫ v

g2(ξ)dξ + C

)2N/(1−N)

F (g) = 0

for N 6= 1. Here f , g are real smooth functions of v, ġ ≡ dg/dv, g̈ ≡ d2g/dv2, and
σ ∈ R\{0}.

Proof: For u = g(v) system (5) takes the form

2nv =
−2gġF (g)

gg̈ − 2ġ2 − g2
≡ F1(v) (6)

(5nv)2 =
g2F (g)

gg̈ − 2ġ2 − g2
≡ F2(v). (7)

Here ġ ≡ dg/dv, etc. We now (locally) transform the compatible system (4) with the
transformation

w(x) = f(v(x)), (8)

where f is a smooth real function. This leads to the following system

2nv =
λN

f(v)ḟ(v)
− λf̈(v)
ḟ3(v)

(9)

(5nv)2 =
λ

ḟ2(v)
. (10)

Note that system (9), (10) admits the necessary condition of compatibility (Fushchych et
al 1991). We can now combine system (9), (10) with system (6), (7) which leads to an
expression of g in terms of f , namely

g(v) = σ

(
ḟ(v)
fN (v)

)1/2

, (11)

where σ is an arbitrary real constant. The conditions on g can now be obtained by either
relating (9) to (6), or (10) to (7). This leads to two cases: For the first case
N = 1: The expression for f takes the form

f(v) = C exp
(

1
σ2

∫ v

g2(ξ)dξ
)

(12)

(C is an arbitrary real constant) so that the condition on g is

gg̈ − 2ġ2 − g2 − C2

λσ4
g6 exp

(
2
σ2

∫ v

g2(ξ)dξ
)
F (g) = 0. (13)

For the second case
N 6= 1: Here f takes on the form

f(v) =
(

1−N

σ2

∫ v

g2(ξ)dξ + C

)1/(1−N)

(14)
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(C is an arbitrary real constant) with the following condition on g

gg̈ − 2ġ2 − g2 − 1
λσ4

g6
(

1−N

σ2

∫ v

g2(ξ)dξ + C

)2N/(1−N)

F (g) = 0. (15)

2

We can now make the following

Corollary 1: Explicit solutions of (1) are given by

ψ(x) = g(v(x)) exp[iv(x)],

where g has to satisfy (13) for N = 1 (f given by (12)), and (15) for N 6= 1 (f given by
(14)), whereby f has to be an invertible function of v, i.e., v(x) = f−1 (w(x)), and

2nw =
λN

w
, (5nw)2 = λ.

Solutions for w are listed in Table 1.

We now give some examples of d‘Alembert equations and their amplitude-phase-
solutions under the assumption

g(v) = vβ.

Consider N = 1, β = −1/2. From Proposition 1, (1) takes the following form:

2nψ +
λσ4

C2

(
1
4
|ψ|4/σ2 − |ψ|4(1−σ2)/σ2

)
ψ = 0.

By Corollary 1, solutions of the above d’Alembert equation can be given in the form

ψ(x) =
(

1
C
w(x)

)−1/(2σ2)

exp

[
i

(
1
C
w(x)

)σ2]
,

where w are the solutions (given in table 1) of the compatible system

2nw =
λ

w
, (5nw)2 = λ.

Note some special cases of σ:

σ2 = 1 : 2nψ −
λ

C2

(
1− 1

4
|ψ|4

)
ψ = 0

σ2 =
4
5

: 2nψ −
(

4
5

)2 λ

C2

(
|ψ| − 1

4
|ψ|5

)
ψ = 0

σ2 =
2
3

: 2nψ −
(

2
3

)2 λ

C2

(
|ψ|2 − 1

4
|ψ|6

)
ψ = 0.
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As a second example we consider N = 2, β = −1, so that

2nψ +
1
σ8

(
|ψ|2 +

1
λσ4

|ψ|6
)
ψ = 0

ψ(x) = (C − w(x))σ2 exp
[
i

1
(C − w(x))σ2

]
,

where w are solutions (listed in table 1) of the compatible system

2nw =
2λ
w
, (5nw)2 = λ.

Let us now assume phase as a function of amplitude, i.e., v = g(u). We can make the
following

Proposition 2: System (5), with v = g(v), takes the form of the compatible system (4),
if and only if

ġ(u) =
σ

u2

ḟ(u)
fN (u)

f (u(x)) = w(x),

where

ug̈ + 2ġ + u2ġ3 +
u4C2

λσ2
ġ3 exp

(
1
σ

∫ u

ξ2
dg(ξ)
dξ

dξ

)
F (u) = 0

for N = 1, and

ug̈ + 2ġ + u2ġ3 +
u4

λσ2

(
C − N − 1

σ

∫ u

ξ2
dg(ξ)
dξ

dξ

)2N/(1−N)

F (u) = 0

for N 6= 1. Here f , g are real smooth functions of u, ġ ≡ dg/du, g̈ ≡ d2g/du2, and
σ ∈ R\{0}.

Proof: For v = g(u), system (5) takes the form

2nu =
(u2g̈ + 2uġ)F (u)
ug̈ + 2ġ + u2ġ3

≡ F1(u) (16)

(5nu)2 =
−u2ġF (u)

ug̈ + 2ġ + u2ġ3
≡ F2(u). (17)

Here ġ ≡ dg/du, etc. By (locally) transforming the compatible system (4) with

w(x) = f(u(x)), (18)

we obtain the compatible system

2nu =
λN

f(u)ḟ(u)
− λf̈(u)
ḟ3(u)

(19)

(5nu)2 =
λ

ḟ2(u)
. (20)
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Combining this with system (16) and (17), it follows that

ġ(u) =
σ

u2

ḟ(u)
fN (u)

, (21)

where σ 6= 0 is a real constants and f is a real smooth function. For the condition on g
we have to destinguish between two cases:
N = 1: Here f takes on the form

f(u) = C exp
(

1
σ

∫ u

ξ2
dg(ξ)
dξ

dξ

)
(22)

(C is an arbitrary real constant) so the condition on g follows:

ug̈ + 2ġ + u2ġ3 +
u4C2

λσ2
ġ3 exp

(
1
σ

∫ u

ξ2
dg(ξ)
dξ

dξ

)
F (u) = 0. (23)

N 6= 1: f is given by

f(u) =
(
C − N − 1

σ

∫ u

ξ2
dg(ξ)
dξ

dξ

)1/(1−N)

(24)

(C is an arbitrary real constant) with the following condition on g:

ug̈ + 2ġ + u2ġ3 +
u4

λσ2

(
C − N − 1

σ

∫ u

ξ2
dg(ξ)
dξ

dξ

)2N/(1−N)

F (u) = 0. (25)

2

We can now make the following

Corollary 2: Explicit solutions of (1) are given by

ψ(x) = u(x) exp[ig(u(x))],

where g has to satisfy (23) for N = 1 (f given by (22)), and (25) for N 6= 1 (f given by
(24)), whereby f has to be an invertible function of u, i.e., u(x) = f−1 (w(x)), and

2nw =
λN

w
, (5nw)2 = λ.

Solutions for w are listed in table 1.

Let us consider, for example,

g(u) = uβ .

With N = 1, β 6= −2, the following nonlinear d’Alembert equation follows from Proposi-
tion 2:

2nψ +
λσ2

C2
|ψ|−2

(
1 +

β + 1
β2

|ψ|−2β
)

exp
[ −β
σ(β + 2)

|ψ|β+2
]
ψ = 0.
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Solutions take the form

ψ(x) = u(x) exp
[
iu(x)β

]
u(x) =

(
σ(β + 2)

β
ln
∣∣∣∣w(x)
C

∣∣∣∣)1/(β+2)

,

where w is a solution (listed in table 1) of the compatible system

2nw =
λ

w
, (5nw)2 = λ.

Note that, if β = −1 the equation takes the form:

2nψ +
λσ2

C2
|ψ|−2 exp

[
1
σ
|ψ|
]
ψ = 0.

With N 6= 1, β 6= −2, the following nonlinear d’Alembert equation follows from Proposi-
tion 2:

2nψ + λσ2β2|ψ|−2
(

1 +
β + 1
β2

|ψ|−4β
)(

C − (N − 1)β
σ(β + 2)

|ψ|β+2
)2N/(N−1)

ψ = 0

with solutions

ψ(x) = u(x) exp
[
iu(x)β

]
u(x) =

(
σ(β + 2)
(N − 1)β

(
C − w(x)1−N

))1/(β+2)

,

where w is a solution (listed in table 1) of the compatible system

2nw =
λN

w
, (5nw)2 = λ.

Note that, if β = −1 and C = 0 the equation has the form

2nψ + α|ψ|2/(N−1)ψ = 0,

where α ≡ λσ2/(N−1)(N − 1)2N/(N−1).

Let us return to system (5). With the assumption

2nv = p(v), (5nv)2 = λ (26)

(p is an arbitrary real smooth function) system (5) reduces to

(5nu)(5nv) +
1
2
up(v) = 0 (27)

2nu− λu− F (u)u = 0. (28)

For a given function p and a compatible solution v of (26) the Lagrange system for (27),
i.e.,

dx0

∂v/∂x0
= − dxj

∂v/∂xj
= − 2du

up(v)
(29)
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(j = 1, . . . , n− 1) can be integrated to obtain an Ansatz for u of the form

u(x) = f1(x)ϕ[ω1(x), . . . , ωn−1(x)] + f2(x). (30)

Here f1, f2, ω1, . . . , ωn−1 are defined by the first integrals of (29). Note that Ansatz
(30) will reduce (28), at least, in the case where the infinitesimal generator, related to
the Lagrange system (29), is a Lie symmetry generator or a Q-conditional symmetry
generator (see Euler and Steeb 1992, Fushchych et al 1993 and Euler et al 1994 for details
on Lie symmetries and Q-conditional symmetries). In this way the Lie symmetries and
conditional symmetries of (1) can be related to compatibility problem of system (26). This
will be the topic of a future paper.

Let us finally note that the technique demonstrated above for the d’Alembert equation
can also be applied to other complex equation for which amplitude-phase-solutions are
seeked. However, the compatibility problem will change. For example, consider the n-
dimensional nonlinear Schrödinger equation

i
∂ψ

∂x0
+4n−1ψ − F (|ψ|)ψ = 0,

where 4n−1 ≡
n−1∑
j=1

∂2/∂x2
j . Let us use the same assumptions as in Proposition 1, i.e.,

ψ = g(v) exp[iv]. The condition on g is then given by

g̈ +
f1(v)
f2(v)

ġ − f2(v) + f3(v)
f2(v)

g − g

f2(v)
F (g) = 0

(ġ ≡ dg/dv, f2 6= 0), where

ġ(v)
g(v)

= − f1(v)
2f2(v) + f3(v)

and fj , v is obtained from the compatible solutions of

4n−1v = f1(v), (5n−1v)2 = f2(v),
∂v

∂x0
= f3(v).

Results are represented in this talk obtained in collaboration with Peter Basarab–
Horwath and Wilhelm Fushchych.
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