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Abstract
We investigate the structure of certain types of subalgebras of Galilei algebras and
the relationship between the conjugacies of these subalgebras under different groups
of automorphisms.

1 Introduction

In the following, we use the terms ”full, special, extended, and classical Galilei algebra
of an n-dimensional space” for the optical algebra of the Minkowski space R1,n+1, the
extended Schrödinger algebra, the extended Galilei similitude algebra, and the extended
Galilei algebra of an n-dimensional space, respectively. We use the following notation for
these algebras:

AG4(n) = AOpt(1, n+ 1), AG3(n) = AS̃ch(n),
AG2(n) = AG̃(n) ⊃+ < D >, AG1(n) = AG̃(n).

The reduced algebra corresponding to AGj(n) is the factor algebra AḠj(n) =
= AGj(n)/ < M >.

The classification of subalgebras of the Galilei algebras for n = 2, 3, was done in [1–7].
Subalgebras of the Galilei algebras for an arbitrary n-dimensional space were investigated
in [4, 7–9]. In [7, 10] the reduction to ordinary differential equations of the linear heat
equation was carried out, using I-maximal subalgebras of the algebra AG3(n). The sym-
metry reduction by all I-maximal subalgebras of the corresponding Galilei algebras for
different nonlinear generalizations of the Schrödinger equation was done in [7, 11]. Reduc-
ing hyperbolic equations to parabolic ones [12], one can exploit subalgebras of the Galilei
algebras in order to construct wide classes of exact solutions of hyperbolic equations. This
was done in [12] using subalgebras of AG3(2).

In this article, we give conditions for splittability of all extensions of a subalgebra
of the algebra AO(n) ⊕ AGL(2,R) in the reduced full Galilei algebra, from which it is
easy to obtain the corresponding conditions for other Galilei algebras. We give modified
formulations of theorems about the structure of subalgebras of the Galilei algebras [7],
which, we believe, are easier to understand and apply. We also investigate the connection
between the conjugacies of subalgebras under groups of inner automorphisms of different
Galilei algebras.
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2 Definitions of Galilei Groups and Algebras

We denote by AG the Lie algebra of the Lie group G.
The reduced full Galilei group of n-dimensional space is the multiplicative group Ḡ4(n)

of matrices  Γ ~v ~a
0 α β
0 γ δ

 , (1)

where Γ ∈ O(n), ~a,~v ∈ Rn, α, β, γ, δ ∈ R and αδ − βγ 6= 0. The reduced special Galilei
group Ḡ3(n) is a subgroup of the group Ḡ4(n) which consists of those matrices (1), for
which αδ − βγ = 1. The reduced extended Galilei group Ḡ2(n) is the group of matrices
(1) for which γ = 0, δ = α−1. If α = δ = 1, γ = 0, we obtain matrices that are elements
of the reduced classical Galilei group Ḡ1(n).

The Lie algebra AḠ4(n) of the group Ḡ4(n) consists of real matrices X ~v ~a
0 λ µ
0 ν ρ

 ,

where X ∈ AO(n), λ, µ, ν, ρ ∈ R and ~a,~v ∈ Rn. Let Iab be a matrix of order n + 2
having unity at the intersection of the a-th line and the b-th column and zeros elsewhere
(a, b = 1, . . . , n+ 2). The matrices

Jab = Iab − Iba, Ga = Ia,n+1, Pa = Ia,n+2, T = In+1,n+2,

S = −In+2,n+1, D = −In+1,n+1 + In+2,n+2, Z = In+1,n+1 + In+2,n+2

(a < b; a, b = 1, . . . , n) form a basis of the algebra AḠ4(n). They satisfy the following
commutation relations:

[Jab, Jcd] = δadJbc + δbcJad − δacJbd − δbdJac;

[Pa, Jbc] = δabPc − δacPb; [Ga, Jbc] = δabGc − δacGb;

[Pa, Pb] = [Ga, Gb] = 0; [Ga, Pb] = 0;

[D,Jab] = [S, Jab] = [T, Jab] = [Z, Jab] = 0;

[D,Ga] = Ga; [D,Pa] = −Pa; [S,Ga] = 0; [S, Pa] = Ga;

[T,Ga] = −Pa; [T, Pa] = 0; [Z,Ga] = −Ga; [Z,Pa] = −Pa;

[D,S] = 2S; [D,T ] = −2T ; [T, S] = D;

[D,Z] = [S,Z] = [T,Z] = 0 (a, b, c, d = 1, . . . , n).

(2)

It is easy to verify that < D,S, T >= ASL(2,R) and < D,S, T > ⊕ < Z >=
= AGL(2,R). Let

Q[a, b] =< Pa, . . . , Pb, Ga, . . . , Gb > (a ≤ b).

Then

AḠ4(n) = Q[1, n] ⊃+(AO(n)⊕AGL(2, R)),
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AḠ3(n) = Q[1, n] ⊃+(AO(n)⊕ASL(2, R)),

AḠ2(n) = Q[1, n] ⊃+(AO(n)⊕ < D,T >),

AḠ1(n) = Q[1, n] ⊃+(AO(n)⊕ < T >).

We denote by AḠ0(n) the algebra Q[1, n] ⊃+AO(n).
The full algebra AG4(n) is obtained from the algebra AḠ4(n) by adding the element

M . We have, moreover, [Ga, Pb] = δabM , [Z,M ] = −2M , [M,X] = 0 for every basis
element X 6= Z; the other commutation relations in (2) are unchanged. The factor algebra
AG4(n)/ < M > is identified with AḠ4(n). We shall denote the generators of the algebras
AG4(n) and AḠ4(n) by the same symbols.

Let Φ(n) =< M,P1, . . . , Pn, G1, . . . , Gn >. Then

AG4(n) = Φ(n) ⊃+(AO(n)⊕AGL(2,R)).

The special, extended, and classical Galilei algebras are obtained analogously.
We shall use the following notations:

AO[k, l] =< Jab : a, b = k, k + 1, . . . , l >;

V [k, l] =< Gk, Gk+1, . . . , Gl >; W [k, l] =< Pk, Pk+1, . . . , Pl > .

The group of inner automorphisms of the Lie algebra L is denoted by AdL.
Each inner automorphism of the algebra AO(n) can be extended uniquely to an inner

automorphism of the algebra AḠj(n) (0 ≤ j ≤ 4). In this sense, we say that AdAO(n) is
a subgroup of AdAḠj(n).

The subalgebra K of the algebra AḠ4(n) is said to be split if K = U ⊃+F , where
U ⊂ Q[1, n] and F ⊂ AO(n)⊕ AGL(2,R). We say that K is splittable if there exists an
inner automorphism ψ in AdAḠ4(n) such that ψ(K) is split. Splittability of subalgebras
of the other Galilei algebras is defined in the same manner. By conjugacy of subalgebras
of a Lie algebra L, we mean conjugacy under the group AdL.

3 Criterion for the Splittability of All Extensions

Every subalgebra of the algebra ASL(2,R) is conjugate to one of the following algebras:

0, < D >, < T >, < S + T >, < D, T >, ASL(2,R). (3)

When we speak about subalgebras of the algebra ASL(2,R), we mean the subalgebras
(3). Denote by π the projection of AḠ4(n) onto B = AO(n) ⊕ AGL(2,R). Let F be a
subalgebra of B, and let F ′ be a subalgebra of the algebra AḠ4(n) such that π(F ′) = F .
If every sybalgebra F ′ is splittable, we shall say that F has only splittable extensions in
the algebra AḠ4(n).

Theorem 1 Let σ, τ and ω be projections of B onto AGL(2,R), ASL(2,R) and AO(n),
respectively. The subalgebra F of the algebra B has only splittable extensions in AḠ4(n)
if and only if one of the following conditions is satisfied: (1) σ(F ) coincides with one of
the algebras < D+ 3Z >, < S + T +αZ >, < T +αZ >, where α 6= 0; (2) σ(F ) contains
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Z or D + αZ, where α 6∈ {−1, 1, 3}; (3) σ(F ) =< S + T > and F is not conjugate under
Ad (AO(n) ⊕ ASL(2,R)) to any subdirect sum of < J12 + S + T > and a subalgebra of
the algebra AO[3, n]; (4) τ(F ) 6=< S+T > and ω(F ) is not conjugate under AdAO(n) to
any subalgebra of the algebra AO(n− 1); (5) σ(F ) = 0 and ω(F ) is a semisimple algebra.

4 The Structure of Splitting Subalgebras

In this section, we use the concepts of irreducible and primary parts of an orthogonal
algebra. These definitions can be found in [5,7].

Let L1, L2, . . . Lq be primary parts of a nonzero subalgebra K ′ of the algebra AO(n),
let K ′′ be a subalgebra of the algebra AGL(2,R), whose projection onto ASL(2,R) is
different from < S + T >, and let K be a subdirect sum of K ′ and K ′′. Moreover, let
d0 = 0 < d1 < . . . < dq be a sequence of integers. Li is a subalgebra of AO[di−1 + 1, di],
not conjugate to any subalgebra of the algebra AO[di−1 + 1, di − 1]. U is a subspace of
the space Q[1, n], and Ui is the projection of U onto Q[di−1 + 1, di] (i = 1, . . . , q); Uq+1

is the projection of U onto Q[dq + 1, n] if dq < n and Uq+1 = 0 for dq = n.

Theorem 2 If U is invariant under K, then U = U1⊕· · ·⊕Uq ⊕Uq+1 and each subspace
Ui (i = 1, . . . , q + 1) is invariant under each algebra Lj ⊕K ′′ (j = 1, . . . , q).

Because of Theorem 2, the study of splittable subalgebras of the algebra AḠ4(n), whose
projections onto ASL(2,R) differ from < S + T >, is reduced to the study of splittable
subalgebras of the form U ⊃+(L′ ⊕ L′′), where L′ is a primary subalgebra of the algebra
AO(n), L′′ a subalgebra of the algebra ASL(2,R) and U a subspace of Q[1, n].

Let µa be the projection of Q[1, n] onto < Ga, Pa >. If U is a nonzero subspace of
the space Q[1, n], then the index of U , indU , is the set of all a ∈ {1, . . . , n} such that
µa(U) 6= 0. The decomposition of the space U into the sum of the spaces U1, . . . , Um is
said to be index-direct if indUa ∩ indUb = ∅ whenever a 6= b for all a, b = 1, . . . ,m.

Theorem 3 Let K be a primary subalgebra of the algebra AO(n) which is a subdirect
sum of irreducible subalgebras of the algebras AO[1, a], AO[a+ 1, 2a], . . .,
AO[(r−1)a+1, ra], respectively. Let L be a subalgebra of the algebra ASL(2,R) and let U
be a nonzero subspace of the space Q[1, ra] which is invariant under K⊕L. If L =< D >,
then there exists an automorphism ψ ∈ AdAO(n) such that ψ(K ⊕L) = K ⊕L and ψ(U)
is an index-direct sum of subspaces of the form

V [ka+ 1, (k + 1)a],W [ka+ 1, (k + 1)a], Q[ka+ 1, (k + 1)a],

V [ka+ 1, (k + 1)a]⊕ < Pka+1 + λP(k+1)a+1, . . . , P(k+1)a + λP(k+2)a > .

If L =< T >, then (up to an automorphism from AdAO(n)) the space U is an index-direct
sum of the spaces of the form

W [ka+ 1, (k + 1)a], Q[ka+ 1, (k + 1)a],

W [ka+ 1, (k + 1)a]⊕ < Gka+1 + λP(k+1)a+1, . . . , G(k+1)a + λP(k+2)a > .
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If L =< D,T >, then (up to an automorphism from AdAO(n)) the space U coincides
with one of the following subspaces

W [1, da], Q[1, da], Q[1, ba]⊕W [ba+ 1, da] (1 ≤ d ≤ r).

If L =< D,S, T >, then (up to an automorphism from AdAO(n)) the space U coincides
with Q[1, da], where 1 ≤ d ≤ r.

Theorems 2 and 3 follow immediately from Theorems III.4.1–III.4.3 [7].

Theorem 4 Let K be a primary subalgebra of the algebra AO(n) which is a subdirect sum
of the algebras AO[1, a], AO[a+1, 2a], . . . , AO[(r−1)a+1, ra]

(
1 ≤ r ≤

[n
a

])
. The nonzero

subspaces of the space Q[1, ra] invariant under K⊕ < S + T > are (up to AdAO(n)-
conjugation) the following subspaces:

Q[1, da] (d = 1, . . . , r), Um (m = 1, . . . , r),

Um +Q[ma+ 1, da] (m = 1, . . . , r − 1; d = m+ 1, . . . , r),

where Um is a subdirect sum of the spaces V [1,ma] and W [1,ma], which has zero in-
tersections with these spaces. If a > 2, then m is an even number and there exists an
automorphism ψ ∈ AdAḠ3(n) such that ψ(K⊕ < S+T >) = K⊕ < S+T > and ψ(Um)
is an index-direct sum of subspaces of the form

< Gla+1 − λ−1P(l+1)a+1, . . . , G(l+1)a − λ−1P(l+2)a,

G(l+1)a+1 + λPla+1, . . . , G(l+2)a + λP(l+1)a, (0 < |λ| ≤ 1).

If a = 2, then there exists an automorphism ψ ∈ AdAḠ3(n) such that ψ(K⊕ < S+
+T >) = K⊕ < S + T > and ψ(Um) is an index-direct sum of subspaces of the form

< G2l+1 − γP2l+2, G2l+2 + γP2l+1 > (γ = ±1)

and

G2l+1 − λ−1P2l+3, G2l+2 − λ−1P2l+4, G2l+3 + λP2l+1, G2l+4 + λP2l+2 >,

where 0 < |λ| ≤ 1.

5 Conjugacy of Subalgebras When the Group
of Automorphisms is Extended

We denote by τ the projection of the algebra AḠ4(n) onto ASL(2,R).

Theorem 5 Let L1, L2 be subalgebras of the algebra AḠ4(n) such that τ(L1) = τ(L2).
If the subalgebras L1 and L2 are conjugate under AdAḠ4(n), then they are conjugate
under AdF , where F = AG0(n) ⊃+K with

(1) K =< D,T, Z > for τ(L1) =< T > or τ(L1) =< D,T >,

(2) K =< S + T,Z > for τ(L1) =< S + T > .
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Let AP (1, n) =< P0, P1, . . . , Pn >⊃+ < Jαβ : α, β = 0, 1, . . . , n > be the Poincaré alge-
bra realized as the algebra of real matrices of order n + 2. It contains the algebra
L = AG1(n− 1) ⊃+ < J0n >, where AG1(n − 1) is the classical Galilei algebra, with M =
P0 + Pn, T = 1

2(P0 − Pn), Ga = J0a − Jan (a = 1, . . . , n− 1).

Theorem 6 Let L1, L2 be subalgebras of the algebra AG1(n− 1). These subalgebras are
conjugate under AdAP (1, n) if and only if they are AdL-conjugate or when there exist
automophisms ψ1, ψ2 ∈ AdL with ψ1(L1) = C[ψ2(L2)]C−1 where C = diag[1,−1, 1, . . .
. . . , 1, 1,−1].

Corollary Let L1, L2 be subalgebras of the algebra AG1(n− 1) which are not conjugate
under AdAG1(n − 1) to subalgebras of < M,T, P1, . . . , Pn−1 >⊃+AO(n − 1). Then the
algebras L1, L2 are AdAP (1, n)-conjugate if and only if they are AdL-conjugate.

Suppose that the conformal algebraAC(1, n), n ≥ 2, is realized as the algebraAO(2, n+
1) of real matrices of order n+ 3. Let Pα,Kα, D, Jαβ (α, β = 0, 1, . . . , n) be the standard
basis of AC(1, n). The algebra AC(1, n) contains the full Galilei algebra AG4(n−1), with
M = P0 + Pn, Ga = J0a − Jan (a = 1, . . . , n − 1), D′ = −(J0n + D), S = 1

2(K0 + Kn),

T = 1
2(P0 − Pn), Z = J0n −D.

Theorem 7 Let L1, L2 be subalgebras of AG4(n − 1). These subalgebras are conjugate
under AdAC(1, n) if and only if they are conjugate under AdAG4(n− 1) or when there
exist automorphisms ψ1, ψ2 ∈ AdAG4(n− 1) with ψ1(L1) = C[ψ2(L2)]C−1, where C
is a matrix of order n+ 3, equal to diag[1, . . . , 1,−1,−1] or diag[1, 1,−1, 1, . . . , 1,−1, 1].
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