Galilei Invariance of the Fokker-Planck Equation with Nonlinearity

Vadym CHERKASENKO

Mykolaiv Pedagogical Institute, Mykolaiv, Ukraina
Consider equation

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=-\sum_{k=1}^{n} \frac{\partial}{\partial x_{k}}\left(A_{k} \rho\right)+\frac{1}{2} \sum_{i, k=1}^{n} \frac{\partial^{2}}{\partial x_{i} \partial x_{k}}\left(B_{i k} \rho\right)+F(\rho), \tag{1}
\end{equation*}
$$

where $\rho\left(t, x_{1}, \ldots, x_{n}\right), A_{k}\left(t, x_{1}, \ldots, x_{n}\right), B_{i k}\left(t, x_{1}, \ldots, x_{n}\right), F(\rho)$ are smooth real functions. Equation (1) is multidimensional nonlinear Fokker-Planck equation. A new method in investigation of symmetry of such equations was proposed by W.I. Fushchych [1]. The idea consists in complementing (1) with equations for functions A_{k} and $B_{i k}$. That is, we add to (1) some system of equations for A_{k} and $B_{i k}$, (1), turns out then to be a nonlinear system (even if $F(\rho)=0$). Such an extended system can have a nontrivial symmetry, as we shall see below.

1. First we consider the case $B_{i k}=B \cdot \delta^{i k}, B=$ const >0. We suggest also that coefficient functions A_{k} are to be partial derivatives φ_{k} of some function $\varphi\left(t, x_{1}, \ldots, x_{n}\right)$ and that they satisfy Euler's equation for ideal liquid

$$
\begin{equation*}
\frac{\partial A_{k}}{\partial t}+A_{l} \frac{\partial A_{k}}{\partial x_{l}}=F_{k}(\rho) \tag{2}
\end{equation*}
$$

equations (1) and (2) can be written then as

$$
\begin{align*}
\rho_{0}+\rho_{a} \varphi_{a}+\rho \Delta \varphi- & \frac{B}{2} \Delta \rho=F(\rho) \tag{3}\\
\varphi_{0}+\frac{1}{2} \varphi_{a} \varphi_{a} & =F_{1}(\rho) \tag{4}
\end{align*}
$$

Theorem 1. The system of equations (3), (4) is invariant under the algebra

1) $A G(1, n)=\left\langle P_{0}, P_{a}, J_{a b}, G_{a}, Q\right\rangle$, where $P_{0}=\frac{\partial}{\partial x_{a}}, J_{a b}=x_{a} P_{b}-x_{b} P_{a}, G_{a}=x_{0} P_{a}+x_{a} Q$, $Q=\frac{\partial}{\partial \varphi}$, for arbitrary $F, F^{1} ;$
2) $A G_{1}(1, n)=\langle A G(1, n), D\rangle$, where $D=2 x_{0} P_{0}+x_{a} P_{a}-\frac{2}{k} I, I=\rho \partial_{\rho}$, if $F=\lambda \rho^{k+1}$, $F_{1}=\lambda_{1} \rho^{k} ;$
3) $A G_{2}(1, n)=\left\langle A G_{1}(1, n), A\right\rangle$ where $A=x_{0}^{2} P_{0}+x_{0} x_{a} P_{a}+\frac{\vec{x}^{2}}{2} Q-n x_{0} I$, if $F=\lambda \rho^{\frac{2}{n}+1}$, $F_{1}=\lambda_{1} \rho^{2 / n} ;$
4) $A G_{3}(1, n)=\left\langle A G_{1}(1, n), B\right\rangle$ where $B=I+\lambda_{1} x_{0} Q$, if $F_{1}=\lambda_{1} \ln \rho, F=0$;
5) $A G_{4}(1, n)=\langle A G(1, n), B\rangle$ where $B=I+\lambda_{1} x_{0} Q$, if $F_{1}=\lambda_{1} \ln \rho, F=0$;
6) $A G_{5}(1, n)=\left\langle A G_{2}(1, n), I\right\rangle$, if $F=F_{1}=0$.

We have also found a condition which allows to further enlarge symmetry of the system of equations (3),(4). It has the form $\Delta \rho=0$. Without formulating a corresponding theorem, we simply mention that the following operators and their linear combinations (with I also) emerge:

$$
\begin{equation*}
Q_{1}=x_{a} P_{a}+2 \varphi Q ; Q_{2}=x_{0} P_{0}-\varphi Q ; C_{0}=\exp \left(\lambda x_{0}\right) \cdot I \tag{5}
\end{equation*}
$$

2. Let us consider now the case of one-dimensional FPE with a nonconstant diffusion coefficient. It has the form

$$
\begin{equation*}
\frac{\partial \rho}{\partial x_{0}}+\frac{\partial}{\partial x_{1}}(A \rho)-\frac{1}{2} \frac{\partial^{2}}{\partial x_{1}^{2}}(B \rho)=F(\rho) . \tag{6}
\end{equation*}
$$

We shall require that functions $A\left(x_{0}, x_{1}\right) \equiv v$ and $B\left(x_{0}, x_{1}\right) \equiv 2 u$ are to satisfy the following differential conditions:

$$
\begin{gather*}
v_{0}+v v_{1}=F^{1}(u, v) \tag{7}\\
u_{0}+u_{1} v+v_{1}=F^{2}(u, v) \tag{8}
\end{gather*}
$$

We shall formulate the theorem for the cases only when symmetry operators of system (6)-(8) form a basis of the Galilei algebra; the corresponding Galilei operators have the form $G=x_{0} \partial_{1}+\partial_{u}$ and $G^{(1)}=\exp \left(\gamma x_{0}\right)\left(\partial_{1}+\gamma \partial_{v}\right)$.
Theorem 2. The system of equations (6)-(8) is invariant under the following algebras:

1) $A G(1,1)=\left\langle P_{0}, P_{1}, G\right\rangle$, for arbitrary F and $F_{v}^{1}=F_{v}^{2}=0$, where $F_{v}^{1}=\frac{\partial F^{1}}{\partial v}$;
2) $A G^{(1)}(1,1)=\left\langle A G(1,1), \exp \left(b x_{0}\right) I\right\rangle$, for $F=\rho(b \ln \rho+d), F_{v}^{1}=F_{v}^{2}=0, d=\mathrm{const}$;
3) $A G^{(2)}(1,1)=\left\langle A G^{(1)}(1,1), D^{\lambda}\right\rangle$, where the operator D^{λ} has the form $D^{\lambda}=2 x_{0} P_{0}+$ $\left(x_{1}+\frac{3 \lambda}{2} x_{0}^{2}\right) P_{1}+\left(3 \lambda x_{0}-v\right) \partial_{v}$, for $f=0, F^{1}=\lambda=\mathrm{const}, F^{2}=0$;
4) $A G^{(3)}(1,1)=\left\langle A G(1,1), D^{\lambda}+k I\right\rangle$, for $F=\lambda_{1} \rho^{1-\frac{2}{k}}, F^{1}=\lambda, F^{2}=0(\lambda=\mathrm{const}$, $k \neq 0)$;
5) $A G_{1}(1,1)=\left\langle P_{0}, P_{1}, G^{(1)}\right\rangle$ for arbitrary $F, F_{v}^{1}=\gamma$;
6) $A G_{1}^{(1)}(1,1)=\left\langle A G_{1}(1,1), \exp \left(b x_{0}\right) I\right\rangle$, for $F=\rho(b \ln \rho+d), F_{v}^{1}=\gamma, F^{2}=0$.

References

[1] Fushchych W.I., On some new wave equations of mathematical physics, in Theoretical-algebraic analysis of equations of mathematical physics, Kyiv, Institute of mathematics of Ukr. Acad. of Sciences, 1990, 8-12.
[2] Fushchych W.I.,Chopyk V.I.,Cherkasenko V.P., Symmetry and exact solutions of multidimensional nonlinear Fokker-Planck equation, Dopovidi of Academy of Sciences of Ukraine, 1993, N 2, 32-42.
[3] Cherkasenko V.P., Symmetry and exact solutions of the Fokker-Planck equation with a nonconstant diffusion coefficient, Dopovidi of Academy of Sciences of Ukraine, 1994, N 1, 54-56.

