
Nonlinear Mathematical Physics 1995, V.2, N 3–4, 374–383.

Galilean-invariant Nonlinear PDEs

and their Exact Solutions

Roman M. CHERNIHA

Institute of Mathematics of the National Academy of Sciences of Ukraina,
Tereshchenkivs’ka Street 3, Kyiv 4, Ukraina

Abstract

All systems of (n+1)-dimensional quasilinear evolutional second- order equations in-
variant under the chain of algebras AG(1.n) ⊂ AG1(1.n) ⊂ AG2(1.n) are described.
The obtained results are illustrated by examples of nonlinear Schrödinger equations.

1 Introduction

The (n + 1)-dimensional diffusion (heat) system of equations

λ1Ut = ∆U,
λ2Vt = ∆V

(1)

(where U = U(t, x), V = V (t, x) are unknown differentiable real functions, Ut =
∂U

∂t
, Vt =

∂V

∂t
, x = (x1, . . . xn), λ1, λ2 ∈ R) is known to be invariant under the generalized Galilei

algebra AG2(1.n) [1, 2]
Pt = ∂t, Pa = ∂a, (2a)

Qλ, Ga = tPa −
xa

2
Qλ, Jab = xaPb − xbPa, (2b)

D = 2tPt + xaPa + Iα, (2c)

Π = t2Pt + txaPa −
1
4
|x|2Qλ + tIα, αk = −n/2. (2d)

In relations (2) and always hereinafter Qλ = λ1U∂U +λ2V ∂V , Iα = α1U∂U +α2V ∂V , ∂U ≡
∂

∂U
, ∂V ≡

∂

∂V
, ∂t ≡

∂

∂t
, ∂a ≡

∂

∂xa
, αk ∈ R, k = 1, 2 and summation is assumed from 1

to n over repeated indices.
The algebra produced by operators (2a)–(2b) is called the Galilei algebra AG(1.n),

and its extension by using the operator (2c) will be refered to as AG1(1.n) [1, 2].
It is clear that in the case V (t, x) = 0 from the system (1) we obtain the single heat

equation
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λ1Ut = ∆U (11)

which is invariant under the AG2(1.n) algebra (2) with λ2 = α2 = 0. In [3] it was proved
that a standard generalization of Eq.(equation) (11) of the form

λ1Ut = ∇(D(U)∇U) + B(U)

is not invariant under the Galilei algebra for all functions D(U) 6= c1, B(U) 6= c2, c1 and
c2 are constants. Moreover, in paper [3] we have constructed all quasilinear generalizations
of the heat equation that are invariant with respect to subalgebras of the generalized Galilei
algebra AG2(1.n) . In particular we have found the following nonlinear equation

λ1Ut = ∆U + λ0t
−2U

(
U

E(t, x)

)β

,

where λ0, β are arbitrary constants and E is the fundamental solution of the heat Eq.(11),
which is invariant with respect to the algebra with the basic operators Ga, Jab, D and Π.

Now consider a system of quasilinear generalizations of diffusion Eqs. (1) of the form

λ1Ut = AabUab + CabVab + B1,
λ1Vt = DabUab + EabVab + B2

(3)

Aab, Cab, Dab, Eab, B1, B2 being arbitrary real or complex differentiable functions of 2n+2
variables U, V, U1, . . . Un, V1, . . . Vn. The indices a = 1, . . . n and b = 1, . . . n of the functions
U and V denote differentiating with respect to xa and xb.

System (3) generalizes practically all known nonlinear systems of first- and second-
order evolutional equations, describing various processes in physics, chemistry, biology:
heat-and-mass transfer, filtration of two-phase liquid,diffusion at chemical reactions, etc.
(see, for example, [4–7]).

In the case of complex U =
∗
V , Aab =

∗
Eab, Cab =

∗
Dab, B1 =

∗
B2= B, λ1 =

∗
λ2= i, system

(3) is transformed into a pair of complex conjugate equations. We treat them as a class
of nonlinear generalizations of Schrödinger equations, namely:

iUt = AabUab+
∗

Dab

∗
Uab +B, (4a)

−i
∗
U t=

∗
Aab

∗
Uab +DabUab+

∗
B (4b)

(hereinafter complex conjugate Eqs.(4b) are omitted).
For Aab = Dab = Daa = 0, a 6= b, Aaa = −1, Eq.(4a) is obviously transformed into a

Schrödinger equation with the nonlinear potential B:

iUt + ∆U = B. (41)

By choice of the corresponding potential B = B(U,
∗
U,U1 . . . Un,

∗
U1, . . .

∗
Un), a great variety

of Schrödinger equation generalizations known from the literature can be obtained.
In the case of zero potential B a classical Schrödinger equation is obtained

iUt + ∆U = 0 (5)
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invariant under the AG2(1.n) algebra with the basic operators (2) , where

Qλ = −i(U∂U−
∗
U ∂ ∗

U
), Iα = α(U∂U+

∗
U ∂ ∗

U
) (6)

In series of our papers [1, 2, 4, 8] written in collaboration with Professor W.Fushchych,
all systems of evolutional equations of the form (3) invariant under the chain of algebras
AG(1.n) ⊂ AG1(1.n) ⊂ AG2(1.n) are described. The obtained results are illustrated by
examples of nonlinear Schrödinger equations (NSE). In particular we have obtained the
NSE

iUt + Uxx + λ1U |U |4 + λ2U |U ||U |x = 0 (7)

that is invariant under the generalized Galilei algebra. In [9] all nonequivalent Lie ansätze
and wide classes of exact solutions to NSE (7) were constructed. Note that in the case
λ1 = 1, λ2 = 4 Eq.(7) is called the Eckhaus equation and can be linearized by the integral
substitution [10].

2 Description of systems (3) with Galilean symmetry

The algebra of symmetries for the system of Eqs.(1) contains the Galilei operators Ga,
a = 1, . . . n, being a mathematical expression of the Galilei relativistic principle for Eqs.(1).
The Galilei operators are also known [3] to be closely related with the fundamental solu-
tion of the diffusion equation. We recall that if some system of PDEs is invariant with
respect to the Galilei algebra or its extention, then it gives a wide range of possibilities
for construction of multiparametric families of exact solutions [1,9,11]. Moveover, the
Galilei operators and projective operator (2d) generate nontrivial formulae of multiplica-
tion of solutions. These formulae can be used to convert stationary (time-independent)
into non-stationary (time-dependent) ones with a different structure.

In view of this, it seems reasonable to search for Galilean-invariant nonlinear general-
izations of system (1) in the class of system (3).

Theorem 1. The system of nonlinear Eqs.(3) is invariant under the Galilei algebra in
the representation (2a),(2b) if and only if it has the form:

λ1Ut = ∆U + U [A1∆lnU + C1∆lnV + B1]+

+U [A2ωaωb(lnU)ab + C2ωaωb(lnV )ab], (8)

λ2Vt = ∆V + V [D1∆lnU + E1∆lnV + B2]+

+V [D2ωaωb(lnU)ab + E2ωaωb(lnV )ab]

where (lnU)ab ≡ ∂2lnU

∂xa∂xb
, (lnV )ab ≡ ∂2lnV

∂xa∂xb
, ∆lnU ≡ (lnU)11 + . . . + (lnU)nn,

∆lnV ≡ (lnV )11 + . . . + (lnV )nn, ω = Uλ2V −λ1, ωa =
∂ω

∂xa
≡ (λ2Ua/U − λ1Va/V )ω and

Ak, Bk, Ck, Dk, Ek, k = 1, 2 are arbitrary functions of absolute invariants of the AG(1.n)
algebra ω and θ = ωaωa.

The proof of this and the following theorems is based on the classical Lie scheme, which
is realized in [2, 3] for obtaining the Galilei invariant equations. The detailed cumbersome
calculations are omitted.
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Note that in the case where λ1 = 0, i.e., the first equation of system (3) being elliptical,
the absolute invariants of the Galilei algebra are considerably simpler, namely: ω = U, θ =
UaUa.

In case of systems of the form (3), being AG1(1.n)− and AG2(1.n)- invariant, the

structure of such systems essentially depends on the determinant δ =

∣∣∣∣∣ α1 α2

λ1 λ2

∣∣∣∣∣. It is

clear that the unit operators Iα and Qλ are linearly dependent only in the case , where the
determinant δ = 0. As a result, we obtain two different essentially ( i.e. nonequivalent)
representations of the algebras AG1(1.n) and AG2(1.n) for δ = 0 and δ 6= 0, in contrast
to the case of a single diffusion equation .

We omit theorem that describes AG1(1.n)-invariant systems (see [4,8]).
The AG2(1.n)-invariant systems are described by the following

Theorem 2. The nonlinear system of Eqs.(3) is invariant with respect to algebra AG2(1.n)
with basis operators (2) iff it has the form:

1. In the case when δ 6= 0

λ1Ut = α̂1∆U + UA(θ̂)(λ2∆lnU − λ1∆lnV ) + Uω−2/δB1(θ̂)+

+(1− α̂1)UaUa/U + Uω2/δ−2ωaωb[λ2(lnU)ab − λ1(lnV )ab]C(θ̂), (9)

λ2Vt = α̂2∆V + V D(θ̂)(λ2∆lnU − λ1∆lnV ) + V ω−2/δB2(θ̂)+

+(1− α̂2)VaVa/V + V ω2/δ−2ωaωb[λ2(lnU)ab − λ1(lnV )ab]E(θ̂).

2. In the case when δ = 0

λ1Ut = α̂1∆U + UA(ω)(λ2∆lnU − λ1∆lnV ) + UωaωaB1(ω)+

+(1− α̂1)UaUa/U + U(ωa1ωa1)
−1ωaωb[λ2(lnU)ab − λ1(lnV )ab]C(ω), (10)

λ2Vt = α̂2∆V + V D(ω)(λ2∆lnU − λ1∆lnV ) + V ωaωaB2(ω)+

+(1− α̂2)VaVa/V + V (ωa1ωa1)
−1ωaωb[λ2(lnU)ab − λ1(lnV )ab]E(ω),

A,B1, B2, C, D, E being arbitrary functions, and ω = Uλ2V −λ1 , θ̂ = ωaωaω
2/δ−2.

Note that the systems of reaction-diffusion equations

λ1Ut = ∆U + f(U, V ),
λ2Vt = ∆V + g(U, V ),

(11)

which are intensively studied recently (see, e.g., [6, 7]), are particular case of the system
(3). So, as follows from Theorem 2, the nonlinear systems (11) preserv AG2(1.n)-symmetry
of the linear system of Eqs.(1) if and only if they have the form

λ1Ut = ∆U + β1U
1+λ2γV −λ1γ ,

λ2Vt = ∆V + β2V
1−λ1γUλ2γ ,

(12)

where γ = 4/(n(λ2 − λ1)), λ2 6= λ1, βk ∈ R.
In the case, where the first of Eqs.(3) degenerates into an elliptical one (λ1 = 0),the

AG2(1.n)-invariant systems was also constructed. Note that in paper [8] integration of
two-dimensional systems of Eqs.(9), (10) was reduced in this case to integration of the
linear heat equation with a source.
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3 Galilean-invariant nonlinear generalizations
of the Schrödinger equation

As is noted above, a class of nonlinear generalizations of the Schrödinger Eq.(4) is a specific
case of evolutional equations systems (3). This enables one to describe on the basis of
Theorems 1 and 2 all quasilinear generalizations of the Schrödinger Eq.(5), which are
invariant with respect to the Galilei and generalized Galilei algebras.

Note that the algebra AG2(1.n) in the case of Schrödinger equations is called the
Schrödinger algebra.

Corollary 1. In the class of nonlinear equations of the form (4) the algebra AG(1.n)

(2a),(2b) with Qλ = −i(U∂U−
∗
U ∂ ∗

U
) is admitted only for equations given by

iUt + ∆U = U [A1∆lnU + A2∆ln
∗
U +B]+

+U [A3|U |a|U |b(lnU)ab + A4|U |a|U |b(ln
∗
U)ab], (13)

where Aj , j = 1, 2, 3, 4 and B are arbitrary complex functions of two arguments |U | and

|U |a|U |a; |U |2 = U
∗
U , |U |a =

∂|U |
∂xa

.

In the case Aj = 0, the class of Eqs.(13) is reduced to the equation

iUt + ∆U = UB(|U |, |U |a|U |a) (14)

obtained in [1], whose specific case is a Schrödinger equation with the power nonlinearity
U |U |β , β = const.

Corollary 2. Within the class of nonlinear equations of the form (4), the algebra AG2(1.n)
(2), (6) for α = −n/2 of the linear Schrödinger equation (5) is conserved only for equations
given by

iUt + ∆U = UE1∆ln|U |+ U |U |4/nB+

+U |U |−4/n−2E2|U |a|U |b(ln|U |)ab. (15)

In Eq.(15), E1, E2 and B are arbitrary complex functions of the argument |U |−4/n−2×
|U |a|U |a, which is an absolute invariant of the generalized Galilei algebra AG2(1.n).

In the case E1 = E2 = 0, from the class of Eqs.(15) the following equation

iUt + ∆U = U |U |4/nB (16)

is obtained, which had been obtained in [1, 2]. Note that for B = c = const, Eq. (16) is
transformed into an equation with a fixed power nonlinearity, studied in a series of papers
([12, 13] for n = 1, [15] for n = 2, [1, 2, 11] for n = 3). In [1, 2] multiparametric families
of invariant solutions of Eq.(16) of the form

iUt + ∆U = cU
|U |a|U |a
|U |2

(17)

and
iUt + ∆U = cU |U |4/3 (18)

are constructed and systematized.
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Being written in the case of one spatial variable (n=1), the class of Eqs.(15) after
simple transformations is given by

iUt + Uxx = UE1(ln|U |)xx + U |U |4B, U = U(t, x), x = x1 (19)

E1 and B being arbitrary complex functions of the argument |U |−3|U |x.
Obviously, a specific case of Eq.(21) is given by Eq. (7) that was studied in detail in [9]

for arbitrary constant values of λ1 and λ2. A multidimensional generalization of Eq.(7),
posessing the AG2(1.n) symmetry, can be proposed as

iUt + ∆U + c1U |U |4/n + c2U |U |−1+2/n(|U |a|U |a)1/2 = 0. (20)

4 Ansätze and formulae of multiplication
of exact solutions of NSE (7)

In this section we consider NSE (7), namely:

iUt + Uxx + λ1 | U |4 U + λ2 | U || U |x U = 0,

where U t =
∂U

∂t
, Uxx =

∂2U

∂x2
, λk = ak + ibk, ak, bk ∈ R, k = 1, 2.

For λ2 = 0, λ1 = a1, NSE (7) is transformed into a Schrödinger equation with the
power nonlinearity without derivatives

iUt + Uxx + a1 | U |4 U = 0 (21)

which was studied in [12, 13].
Contrary to a well-known NSE with a cubic nonlinearity which is integrated by the

inverse scattering problem method [14], Eq.(21) cannot thus be integrated.
At λ1 = 0, λ2 = a2, NSE (7) is transformed into a Davey-Stewartson-type equation for

the case of a single spatial variable [16]

iUt + Uxx + a2 | U || U |x U = 0. (22)

Finally for 16λ1 =| λ2 |2, | λ2 |2=| a2 + ib2 |2≡ a2
2 + b2

2, NSE (7) was studied in
[10,17], where it was shown to be reduced to the linear Schrödinger Eq.(5) by the integral
substitution. Note that it cannot be linearized for arbitrary λ1, λ2 [17].

As is shown in the section 3, the class of AG2(1.1)-invariant Eqs.(15) contains NSE
(7). In this section we will construct ansätze for this equation over all nonequivalent
subalgebras of the generalized Galilei algebra AG2(1.1). We will suggest also the formulae
for multiplication of exact solutions of NSE (7) into multiparametric families of ones [9].

In [18] systems of all nonequivalent (nonconjugate) subalgebras of the Galilei algebra
and its generalizations are constructed. The complete set of nonconjugate subalgebras

of the AG2(1.1) algebra with basic operators (2) for λ1 =
∗
λ2= −i, n = 1, α = −1/2 is

obtained as
X1 = Px, X2 = Qλ, X3 = Pt − αQλ

X4 = Pt ∓Gx, X5 = D + αQλ (23)
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X6 = Pt + Π− αQλ, α ∈ R.

By solving corresponding Lagrange equations for each of the operators (23), the fol-
lowing ansätze for the function U are obtained

X1 : U = ϕ(t) (24a)

X2 : U = γ exp(iϕ(t, x)), (24b)

X3 : U = ϕ(x) exp(−iαt) (24c)

X4 : U = exp[∓ it

2
(x +

t2

3
)]ϕ(ω), ω = t2 ± 2x (24d)

X5 : U = t−(1+iα)/4ϕ(ω), ω =
x

t1/2
(24e)

X6 : U = (t2 + 1)−1/4 exp
[ i

4

( tx2

1 + t2
+ 2α arctan t

)]
ϕ(ω), ω = x(1 + t2)−1/2 (24f)

where α, γ are arbitrary real parameters, in (24b) ϕ is a real function.
After putting anzätze (24) into NSE (7), the following reduction equations are obtained

(in ansatz (24d) for convenience, the upper signs are fixed):

i
dϕ

dt
+ λ1 | ϕ |4 ϕ = 0, (25a)

i
(
i
∂ϕ

∂t
+

∂2ϕ

∂x2

)
−

(∂ϕ

∂x

)2
+ λ1γ

4 = 0, (25b)

d2ϕ

dx2
+ αϕ +

(
λ1 | ϕ |4 +λ2 | ϕ |

d | ϕ |
dx

)
ϕ = 0, (25c)

4
d2ϕ

dω2
+

1
4
ωϕ +

(
λ1 | ϕ |4 +2λ2 | ϕ |

d | ϕ |
dω

)
ϕ = 0, (25d)

d2ϕ

dω2
− i

2
ω

dϕ

dω
+

α− i

4
ϕ +

(
λ1 | ϕ |4 +λ2 | ϕ |

d | ϕ |
dω

)
ϕ = 0, (25e)

d2ϕ

dω2
− 1

4
(2α + ω2)ϕ +

(
λ1 | ϕ |4 +λ2 | ϕ |

d | ϕ |
dω

)
ϕ = 0. (25f)

All Eqs.(25) are ordinary differential equations (ODE), except for equations (25b),
and from their solutions by means of Eqs.(24), the exact solutions of NSE (7) are readily
obtained. Eq. (25b) obtained by reduction of NSE (7) by unit operator X2 = Qλ is easily
integrated.

All the solutons that can be obtained by means of the AG2(1.1)-symmetry are limited
to NSE (7) invariant solutions obtained by means of Eqs.(24)–(25). This is due to the
fact any other invariant solution can be obtained by applying corresponding finite trans-
formations generated by operators (2) to Eq.(24)-type solutions. Successive application of

finite transformations, generated by basic operators (2) for λ1 =
∗
λ2= −i, n = 1, α = −1/2,

to an arbitrary fixed solution V(t,x) of NSE (7) gives the following formula of its multiplica-
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tion into a six-parameter family of solutions (for more detail see [1, 2])

U(t, x) =
( m

d0 − pm2t

)1/2
exp

[
iγ + i

pm2x2 + 2m(ε + pd)x + m2ε2t + b0

4(pm2t− d0)

]
×

V
( m2t + d1

d0 − pm2t
,

mx + m2εt + εd1 + d

d0 − pm2t

)
, (26)

where d0 = 1− pd1, b0 = pd2 + 2εd + ε2d1 and γ, p,m, ε, d1, d being arbitrary parameters.
The formula

U(t, x) = exp
[
− iε

2

(
x +

εt

2

)]
V (t, x + εt) (27)

is a specific case of formula (26) for γ = p = d1 = d = 0,m = 1, and formula

U =
1√

1− pt
exp

[
− ipx2

4(1− pt)

]
V

( t

1− pt
,

x

1− pt

)
(28)

for γ = ε = d1 = d = 0,m = 1. Formulae (27), (28) generated by Galilean and projective
transformations enable nonstationary solutions of NSE (7) to be obtained from the U =
V (x) stationary solutions.

If in formula (26) for ε = γ = d = 0, d1 = 1
p a limiting transition for p → ∞,m →

0, pm → −1 is made, formula for obtaining new solutions is obtained

U(t, x) =
1√
t
exp

( ix2

4t

)
V

(
− 1

t
,
x

t

)
, (29)

which is well-known for the linear Schrödinger and heat equations. Moreover, it is also
valid for any other nonlinear equations invariant with respect to Pt, D, Π operators .

It should be noted that application of formulae (29) and (26) for p = ε = d1 = d = 0
to an evident generalization of ansatz (24d)

U(t, x) = exp
[
− it

2

(
x +

t2

3
+ 2α

)]
ϕ(ω), ω = t2 + 2x

reduces it to the form

U(t, x) =
1√
t
exp

[ i

12t3
(3x2t2 + 6m3xt + 2m6+

+12αm2t2 + 12γt3)
]
ϕ

(2xt + m3

t2

)
, (30)

m,α, γ being arbitrary parameters. Ansatz (30) is quoted in Ref.17 as an example of
non-Lie ansatz, though as shown above, it is the Lie ansatz.

Moreover, in the new paper [19] the formula (29) is called one to represent a discrete
symmetry. But, as you can see, this formula can be obtained also from a Lie symmetry.
Note that multidimensional generalization of this formula was constructed in our paper
[1].



382 R. CHERNIHA

5 Construction of exact solutions of NSE (7)

Exact solutions of NSE (7) will be obtained from solutions of reduction Eqs.(25) with
subsequent application of ansätze (24). Here I give only examples (in detail see [9]).

Example 1. The NSE (7) for α < 0, λ1 = a1 + ib1, λ2 = a2 + ib2, a2 = b1 = 0, 16a1 > b2
2

has the following exact solution

U =
A−

(cosh 2
√
−α(x + εt))

1
2

exp
[
− iε

2

(
x +

(
2α +

ε

2

)
t +

8b2

ε(−α)1/2A2
−
× (31)

× arctan(exp 2
√
−α(x + εt))

)]
,

where A− =
(−a1 + b22

16

3α

)1/4
, α, ε are arbitrary real parameters.

Evidently, for b2 = 0 the solution of Eq.(21) from the solution (31) follows

U =
A−

(cosh 2
√
−α(x + εt))

1
2

exp
[
− iε

2

(
x +

(
2α +

ε

2

)
t
)]

(32)

which is called soliton-like similarly to the known Zakharov-Shabat solution [14] for the
NSE with the nonlinearity U | U |2.

Since the function arctan is limited from below and from above, the solution (31) of
the NSE (7) will be have similarly to solution (32) for | x + εt |→ ∞.

Example 2. The NSE (7) for λ1 = a1, λ2 = a2 + ib2, 16a1 = b2
2, a2 6= 0 has the following

exact solution

U = R−1(x + c0) exp
[
− ib2

4

∫
(R−1(x + c0))2dx

]
, (33)

where R−1 is an inverse function to R . The function R satisfies the transcendental relation

x + c0 =
1

2a2d2
ln

∣∣∣(ρ− d)3

ρ3 − d3

∣∣∣ +
√

3
a2d2

arctan
(2ρ + d

−
√

3d

)
≡ R(ρ)

where c0, d are arbitrary real parameters.

The exact solution (33) posessing a discontinuity at the point x =
√

3π

2a2d2
− c0 (i.e., a

resonance point is present, when U →∞ ) and at infinity (x →∞) is limited.
Note that by applying any of formulae (26)–(29), solution (33) is transformed into a

non-stationary solution of NSE (7).

Example 3. The NSE (7) for b1 = 0, a2 < 0, 16a1 = b2
2 has the following exact solution

U =
2x + t2√
−8a2

exp
[
− i

2

(
tx +

t3

3
+

b2

96a2
(2x + t2)3

)]
.

The constructed exact solutions of the NSE (7) exist only at 16λ1 6= |λ2|2, i.e., in the
case, where a nonlocal linearization of this equation being lacking.

We have constructed also new exact solutions of the NSE (7) in the case 16λ1 = |λ2|2.
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Example 4. The NSE (7) for λ1 = a1, λ2 = ib2, 16a1 = b2
2 has the following exact solution

U =
√

x

t
Z 1

4

(
− x2

2t

)
exp

[ i

4

(x2

2t
− b2

∫
ωZ2

1
4

(
− ω2

2

)
dω

)]
,

where ω =
x√
t

and Z 1
4
(·) is an arbitrary cylindrical function.
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