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Abstract

Lie reduction of the Navier-Stokes equations to systems of partial differential equa-
tions in three and two independent variables and to ordinary differential equations is
described.

The Navier-Stokes equations (NSEs)

~ut + (~u · ~∇)~u−4~u+ ~∇p = ~0, div ~u = 0 (1)

which describe the motion of an incompressible viscous fluid are the basic equations of
hydrodynamics. In (1) and below, ~u = {ua(t, ~x)} denotes the velocity field of a fluid,
p = p(t, ~x) denotes the pressure, ~x = {xa}, ∂t = ∂/∂t, ∂a = ∂/∂xa, ~∇ = {∂a}, 4 = ~∇· ~∇
is the Laplacian. The kinematic coefficient of viscosity and fluid density are set equal to
unity.

The problem of finding exact solutions of the nonlinear equations (1) is an important
and rather complicated one. There are some ways to solve it. Considerable progress in this
field can be achieved by means of a symmetry approach. Equations (1) have nontrivial
symmetry properties. Relatively recently, it was found by means of the Lie method [2, 1]
that the maximal Lie invariance algebra of the NSEs (1) is the infinite-dimensional algebra
A(NS) with the basis elements

D = 2t∂t + xa∂a − ua∂ua − 2p∂p, Jab = xa∂b − xb∂a + ua∂ub − ub∂ua , a < b,

∂t, R(~m) = R(~m(t)) = ma∂a +ma
t ∂ua −ma

ttxa∂p, Z(χ) = Z(χ(t)) = χ∂p,
(2)

where ma = ma(t) and χ = χ(t) are arbitrary smooth functions of t (for example, from
C∞((t0, t1),R) ). Hereafter, repeated indices denote summation, whereby we consider the
indices a, b to take on values in {1, 2, 3} and the indices i, j to take on values in {1, 2}.
Algebra (2) contains, as a subalgebra, the eleven-dimensional extended Galilei algebra
< ∂t, D, Jab, ∂a, Ga = t∂a + ∂ua > .

To find exact solutions of (1), the symmetry approach in explicit form was used in a
number of papers (see references in [4]). In our works [4, 7, 5, 6, 12], we made a com-
plete symmetry reduction of the NSEs to systems of PDEs in three and two independent
variables and to systems of ODEs, using the subalgebraic structure of A(NS).
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The reduction problem for the NSEs is to describe ansatzes of the form [3]:

ua = fab(t, ~x)vb(ω) + ga(t, ~x), p = f0(t, ~x)q(ω) + g0(t, ~x) (3)

that reduce system (1) in four independent variables to systems of differential equations
in the functions va and q depending on N variables ω = {ωk} , where N takes on a fixed
value from the set {1, 2, 3}. In formulas (3), fab, ga, f0, g0, and ωk are smooth functions
to be specified. In such a general formulation, the reduction problem is too complex to
solve. But using the Lie symmetry, some ansatzes (3) reducing the NSEs can be obtained.

Using the Lie method, first we constructed complete sets of A(NS)-inequivalent sub-
algebras of dimension 4 − N for N = 3, N = 2, and N = 1. Knowing the subalgebraic
structure of A(NS), we found explicit forms for the functions fab, ga, f0, g0, and ωk and
obtained reduced systems in the functions va and q. Due to the choice of ansatzes, the
reduced systems have, in the majority of cases, rather simple forms and can be united in
a smaller number of classes. We investigated symmetry properties (both classic and non-
classic) of the reduced systems of PDEs. A number of them have Lie symmetry operators
that are not induced by operators from A(NS). Symmetry reduction of such systems gives
solutions that can not be obtained by means of direct reduction of the NSEs. We also
managed to find exact solutions for most of the reduced systems of ODEs. As a result,
large classes of exact solutions for the NSEs were obtained.

Let us consider the reduction of the NSEs to systems of PDEs in three independent
variables. A complete set of A(NS)-inequivalent one-dimensional subalgebras of A(NS)
is exhausted by the following algebras:

1. A1
1(κ) =< D + 2κJ12 >, where κ ≥ 0.

2. A1
2(κ) =< ∂t + κJ12 >, where κ ∈ {0; 1}.

3. A1
3(η, χ) =< J12+R(0, 0, η(t))+Z(χ(t)) > with smooth functions η and χ. Algebras

A1
3(η, χ) and A1

3(η̃, χ̃) are equivalent if ∃ε, δ ∈ R, ∃λ ∈ C∞((t0, t1),R):

η̃(t̃) = e−εη(t), χ̃(t̃) = e2ε(χ(t) + λtt(t)η(t)− λ(t)ηtt(t)), (4)

where t̃ = te−2ε + δ.

4. A1
4(~m,χ) =< R(~m(t))+Z(χ(t)) > with smooth functions ~m and χ: (~m,χ) 6≡ (~0, 0).

Algebras A1
4(~m,χ) and A1

4( ~̃m, χ̃) are equivalent if ∃ε, δ ∈ R, ∃C 6= 0, ∃B ∈ O(3),
∃~l ∈ C∞((t0, t1),R3):

~̃m(t̃) = Ce−εB~m(t), χ̃(t̃) = Ce2ε(χ(t) +~ltt(t) · ~m(t)− ~mtt(t) ·~l(t)), (5)

where t̃ = te−2ε + δ.

By means of the algebras A1
1−A1

4 (sometimes, when additional restrictions for param-
eters are satisfied), we can construct ansatzes of codimension one for the Navier-Stokes
field. We list these ansatzes and the corresponding reduced systems.

Ansatzes constructed by means of the algebras A1
1 and A1

2 have the following forms:

1. u1 = |t|−1/2(v1 cos τ − v2 sin τ) + 1
2x1t

−1 − κx2t
−1,

u2 = |t|−1/2(v1 sin τ + v2 cos τ) + 1
2x2t

−1 + κx1t
−1,

u3 = |t|−1/2v3 + 1
2x3t

−1,

p = |t|−1q + 1
2κ

2t−2r2 + 1
8 t
−2xaxa,

(6)
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where y1 = |t|−1/2(x1 cos τ + x2 sin τ), y2 = |t|−1/2(−x1 sin τ + x2 cos τ), y3 = |t|−1/2x3,
τ = κ ln |t|. Here and below, va = va(y1, y2, y3), q = q(y1, y2, y3), r = (x2

1 + x2
2)

1/2.

2. u1 = v1 cosκt− v2 sinκt− κx2,

u2 = v1 sinκt+ v2 cosκt+ κx1,

u3 = v3,

p = q + 1
2κ

2r2,

(7)

where

y1 = x1 cosκt+ x2 sinκt, y2 = −x1 sinκt+ x2 cosκt, y3 = x3. (8)

Substituting ansatzes (6) and (7) into the NSEs, we obtain reduced systems of PDEs
with the same general form

vav1
a − v1

aa + q1 + γ1v
2 = 0,

vav2
a − v2

aa + q2 − γ1v
1 = 0,

vav3
a − v3

aa + q3 = 0,

va
a = γ2,

(9)

where γ1 = −2κ sign t, γ2 = −3
2 sign t for ansatz (6) and γ1 = −2κ, γ2 = 0 for ansatz

(7). Hereafter, subscripts 1, 2, and 3 of functions denote differentiation with respect to
y1, y2, and y3, accordingly.

All Lie symmetry operators of system (9) are induced by operators from A(NS).
We should like to emphasize again that selection of a ”good” form for an ansatz is

important for reduction to be successful. Our problem is to find or ”to guess”, at once,
such an ansatz that the corresponding reduced system have a simple and convenient form
for our investigation. Moreover, selection of an ansatz is needed for Lie symmetry operators
of the reduced system to have simple and ”natural” forms too. The ansatzes constructed
by us satisfy these demands. Let us illustrate this statement by the simple example of the
algebra A1

2.
There exists an infinite set of choices for the invariant independent variables ya. For

example, we can take the following expressions for them:

y1 = arctan
x2

x1
− κt, y2 = (x2

1 + x2
2)

1/2, y3 = x3.

However choosing ya in such a way, we obtain a reduced system which strongly differs
from the ”natural” reduced system for κ = 0 (i.e., the NSEs for steady flows of a viscous
fluid in Cartesian coordinates). It is better to choose the variables ya in form (8).

To construct an ansatz, the functions fab, f0, ga, and g0 are to be found too. We
can take, for example, such values of these functions which give an ansatz of the following
simple form:

u1 = ṽ1 cosκt− ṽ2 sinκt, u2 = ṽ1 sinκt+ ṽ2 cosκt, u3 = ṽ3, p = q̃, (10)

where ṽa = ṽa(y1, y2, y3) and q̃ = q̃(y1, y2, y3) . Substituting ansatz (10) into the NSEs,
we obtain the reduced system on the new unknown functions ṽa and q̃, having variable
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coefficients. It can be simplified to system (9), having constant coefficients, by means of
the local transformation

ṽ1 = v1 − κy2, ṽ2 = v2 + κy1, ṽ3 = v3, q̃ = q + 1
2 (y2

1 + y2
2). (11)

But simpler ansatz (10) is transformed under (11) into more complicated ansatz (7).
Therefore, we can take ansatz (7) and obtain system (9) at once.

The above is a good example how a reduced system can be simplified by means of
modifying (complicating) an ansatz corresponding to it.

An ansatz constructed by means of the algebra A1
3(η, χ) has the following form:

3. u1 = x1r
−1v1 − x2r

−1v2 + x1r
−2,

u2 = x2r
−1v1 + x1r

−1v2 + x2r
−2,

u3 = v3 + η(t)r−1v2 + ηt(t) arctanx2/x1,

p = q − 1
2ηtt(t)(η(t))−1x2

3 − 1
2r
−2 + χ(t) arctanx2/x1,

where y1 = t, y2 = r, y3 = x3 − η(t) arctanx2/x1.

The corresponding reduced system is very complicated and all its Lie symmetry oper-
ators are induced by operators from A(NS) too. When η = χ = 0, this system describes
axially symmetric motion of a fluid and can be transformed into a system of two equations
for a stream function Ψ1 and a function Ψ2 that are determined by the equations

Ψ1
3 = y2v

1, Ψ1
2 = −y2v

3, Ψ2 = y2v
2.

The transformed system was studied by L.V. Kapitanskiy [9, 10]. He also described
techniques for classifying inequivalent subalgebras of infinite–dimensional algebras of form
(2).

Ansatz corresponding to the algebra A1
4(~m,χ) can be constructed only for such t that

~m(t) 6= ~0. For these values of t, the parameter-function χ can be made to vanish by means
of equivalence transformation (5). An ansatz constructed with the algebra A1

4(~m, 0) and
the corresponding reduced system have the following forms

4. ~u = vi~ni + |~m|−2v3 ~m+ |~m|−2(~m · ~x)~mt − yi~n
i
t,

p = q − 3
2 |~m|

−2((~mt · ~ni)yi)2 − |~m|−2(~mtt · ~x)(~m · ~x)+

+1
2(~mtt · ~m)|~m|−4(~m · ~x)2,

(12)

where yi = ~ni · ~x, y3 = t, ~ni · ~m = ~n1 · ~n2 = ~n1
t · ~n2 = 0, |~ni| = 1 and

4. vi
3 + vjvi

j − vi
jj + qi + ρiv3 = 0,

v3
3 + vjv3

j − v3
jj = 0,

vi
i + ρ3 = 0,

(13)

where ρi = ρi(y3) = 2|~m|−2(~mt ·~ni), ρ3 = ρ3(y3) = |~m|−2(~mt · ~m). For arbitrary values
of the functions ρa, system (13) is invariant under the operators

R3(ψ1(t), ψ2(t)) = ψi∂yi + ψi
t∂vi − ψi

ttyi∂q, Z1(λ(t)) = λ∂q, S = ∂v3 − ρiyi∂q
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which are induced by operators from A(NS). But for some values of ρa, system (13)
additionally admits Lie symmetry operators contained in the span of the operators

E(χ(t)) = 2χ∂t + χtyi∂yi + (χttyi − χtv
i)∂vi − (2χtq + 1

2χtttyjyj)∂q,

J1
12 = y1∂2 − y2∂1 + v1∂v2 − v2∂v1 , I = v3∂v3 .

For example, if ρi = 0, the maximal Lie invariance algebra of (13) is the algebra

< R3(ψ1(t), ψ2(t)), Z1(λ(t)), S, J1
12, E(χ1(t)), E(χ2(t)), I >,

where χ1 = e−ρ(t)
∫
eρ(t)dt, χ2 = e−ρ(t), ρ =

∫
ρ3(t)dt, t = y3. The operators E(χi) and I

are not induced by operators from A(NS) if ρ3(t) 6= α1(α2t+α3)−1, where αb = const .
We reduced system (13) by means of the algebras containing the ”nontrivial” operators

E(χi) and I to systems in one and two independent variables and constructed their exact
solutions. Investigation of system (13) is simplified due to the function ρ3 can be made
to vanish by means of a local transformation. It is interesting to note that a number of
the reduced systems are analogous to ones obtained from the NSEs directly. And we can
investigate them only once. This situation is reiterated.

Let us proceed to the reduction of the NSEs to systems in two independent variables.
A complete set of A(NS)-inequivalent two-dimensional subalgebras is exhausted by twelve
algebras. By means of eight of them, we can constructed ansatzes that reduce the NSEs
to five classes of systems. Two reduced systems are very complicated and all their Lie
symmetry operators are induced by operators from A(NS). But the other systems are
very interesting.

So, an ansatz constructed with the algebra A2
1(~m

1, ~m2) =< R(~m1(t)), R(~m2(t)) >,
where ~m1

tt · ~m2 − ~m1 · ~m2
tt = 0 and rank(~m1, ~m2) = 2, has the form

1. ~u = ~w + λ−1(~ni · ~x)~mi
t − λ−1(~k · ~x)~kt,

p = s− 1
2λ
−1(~mi

tt · ~x)(~ni · ~x)− 1
2λ
−2(mi

tt · ~k)(~ni · ~x)(~k · ~x),
(14)

where z1 = t, z2 = (~k ·~x), ~k = ~m1× ~m2, ~n1 = ~m2×~k, ~n2 = ~k× ~m1, λ = λ(t) = ~k ·~k 6= 0
∀t ∈ (t0, t1). Here and below ~w = ~w(z1, z2), s = s(z1, z2).

Substituting ansatz (14) into the NSEs, we obtain the following reduced system:

1. ~w1 − λ~w22 + s2~k + (~k · ~w)(~w − λ−1~kt) + λ−1(~ni · ~w)~mi
t + z2~e = ~0,

~k · ~w2 = 0,
(15)

where ~e = ~e(t) = 2λ−2(~m1
t · ~m2 − ~m1 · ~m2

t )~kt × ~k + λ−2(2~kt · ~kt − ~ktt · ~k) and t = z1.
The general solution (15) is expressed in terms of the general solution of the decom-

posed system of two linear one-dimensional heat equations. As a result, we obtain two
classes of solutions for the NSEs:

Case A. ~m1
t · ~m2 − ~m1 · ~m2

t = 0 :

~u = λ−1(gi
ζ(τ, ζ) + ~mi

t · ~x)~ni − λ−1(~kt · ~x)k,

p = 2λ−2(~ni · ~kt)gi(τ, ζ)+

+1
2λ
−2(~ktt · ~k−2~kt · ~kt)ζ2 − 1

2λ
−1(~ni · ~x)(~mi

tt · ~x)− 1
2λ
−2(~k · ~mi

tt)(~n
i · ~x)ζ,
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Case B. ~m1
t · ~m2 − ~m1 · ~m2

t = 1 :

~u = λ−1
(
θij(t)gj

ζ(τ, ζ) + θi0(t)ζ + ~mi
t · ~x− λ−1((~k× ~mi)·~x)

)
~ni − λ−1(~kt · ~x)~k,

p = 2λ−2(~ni · ~kt)(θij(t)gj(τ, ζ) + 1
2θ

i0(t)ζ2)+

+1
2λ
−2(~ktt · ~k−2~kt · ~kt)ζ2 − 1

2λ
−1(~ni · ~x)(~mi

tt · ~x)− 1
2λ
−2(~k · ~mi

tt)(~n
i · ~x)ζ.

Here ζ = ~k · ~x, τ =
∫
λ(t)dt, and

g1
τ − g1

ζζ = 0, g2
τ − g2

ζζ = 0. (16)

(θ1i(t), θ2i(t)) (i = 1, 2) are linearly independent solutions of the system

θi
t + λ−1(~mi · ~m2)θ1 − λ−1(~mi · ~m1)θ2 = 0, (17)

and (θ10(t), θ20(t)) is a particular solution of the nonhomogeneous system

θi
t + λ−1(~mi · ~m2)θ1 − λ−1(~mi · ~m1)θ2 = 2λ−2((~k × ~kt) · ~mi). (18)

Both classes contain two arbitrary solutions of the heat equation and five arbitrary func-
tions of t. The Lie symmetry of the linear one-dimensional heat equations is well known.
It principally differs from one of the NSEs. The Q-conditional symmetry of the heat equa-
tion was investigated in [8] completely. Moreover, being decomposed, system (16) admits
transformations where the independent variables can be transformed in the functions g1

and g2 in different ways. Such transformations are non-Lie ones. Large sets of exact
solutions for the heat equations are known too.

In an analogous way, an ansatz constructed with the algebra A2
2(λ, ρ) =< J12 +

R(0, 0, λ) +Z(χt(t)), R(0, 0, ρ) >, where ρ 6≡ 0 and λtρ− λρt =: ε ∈ {0; 1}, has the form

2. u1 = x1w
1 − x2r

−2(w2 − χ(t)),

u2 = x2w
1 + x1r

−2(w2 − χ(t)),

u3 = (ρ(t))−1(w3 + ρt(t)x3 + ε arctanx2/x1),

p = s− 1
2ρtt(t)(ρ(t))−1x2

3 + χt(t) arctanx2/x1,

(19)

where z1 = t, z2 = r = (x2
1 + x2

2)
1/2.

Substituting ansatz (19) into the NSEs, we obtain the following reduced system:

2. w1
1 + (w1)2 − z−4

2 (w2 − χ)2 + z2w
1w1

2 − w1
22 − 3z2w1

2 + z−1
2 s2 = 0,

w2
1 + z2w

1w2
2 − w2

22 + z−1
2 w2

2 = 0,

w3
1 + z2w

1w3
2 − w3

22 − z−1
2 w3

2 + z−2
2 (w2 − χ) = 0,

2w1 + z2w
1
2 + ρ1/ρ = 0.

(20)

System (20) implies the following expressions for the functions w3 and q:

w1 = −1
2ρtρ

−1 + (η − 1)z−2
2 ,

q = 1
4((ρtρ

−1)t − 1
2(ρtρ

−1)2)z2
2 − ηt ln |z2| − 1

2(η − 1)2z−2
2 +

∫
(w2 − χ)2z−3

2 dz2,
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and the following linear system in the functions wi:

w2
τ − w2

ζζ + ηζ−1w2
ζ = 0, w3

τ − w3
ζζ + (η − 2)ζ−1w3

ζ + ε(w2 − χ)ζ−2 = 0, (21)

where τ =
∫
|ρ(t)|dt, ζ = |ρ(t)|1/2z2, and η = η(t) is an arbitrary smooth function of

z1 = t.
If ε = 0 , system (21) is decomposed and consists of two translational linear equations

of the same general form [13]

fτ + η(τ)ζ−1fζ − fζζ = 0. (22)

When η vanishes, equation (22) is the heat equation, and, when η = −2, it is reduced to
the heat equation by means of the local transformation f̃ = ζf . For the other constant
values of η, the maximal Lie invariance algebra of (22) is generated by the operators

∂τ , D̂ = 2τ∂τ + ζ∂ζ , Î = f∂f ,

Π = 4τ2∂τ + 4τζ∂ζ − (ζ2 + 2(1− η)τ)f∂f , g(τ, ζ)∂f ,

where g = g(τ, ζ) is an arbitrary solution of (22). The operator Π principally differs
from the symmetry operators of the NSEs. Full Lie reduction of (22) with η = const was
made. The equations for the coefficients of Q-conditional symmetry operators of (22) were
obtained in the general case. It was shown that, by means of nonlocal transformations,
these equations are reduced to (22). Some Q-conditional symmetry operators, for example,

∂ζ , X = ∂τ + (η − 1)ζ−1∂ζ , G = (2τ + C)∂ζ − ζf∂f (C = const),

were found in explicit forms. Using them, large classes of non-Lie solutions of (22) were
constructed. A nonlocal invariance transformation for the class of equations (22) was
found.

System (21) with ε = 1 was investigated in the same way.
The last interesting case of reduction to systems in two independent variables is given

by four algebras:

3. A2
3(σ, κ, µ, ν, ε) =< D+ 2κJ12, R(|t|σ+1/2(ν cos τ, ν sin τ, µ)) +Z(ε|t|σ−1) >, where

τ = κ ln |t|, κ > 0, µ ≥ 0, ν ≥ 0, µ2 + ν2 = 1, εσ = 0, and ε ≥ 0.

4. A2
4(σ, ε) =< D, R(0, 0, |t|σ+1/2) + Z(ε|t|σ−1) >, where εσ = 0 and ε ≥ 0.

5. A2
5(σ, µ, ν, ε) =< ∂t + J12, R(νeσt cos t, νeσt sin t, µeσt) + Z(εeσt) >, where µ ≥ 0,

ν ≥ 0, µ2 + ν2 = 1, εσ = 0, and ε ≥ 0.

6. A2
6(σ, ε) =< ∂t, R(0, 0, eσt) +Z(εeσt) >, where σ ∈ {−1; 0; 1}, εσ = 0, and ε ≥ 0.

Ansatzes constructed by means of the algebras A2
3−A2

6 are very cumbersome but have
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simple and similar structure:

3. u1 = |t|−1/2(µw1 + νw3) cos τ − |t|−1/2w2 sin τ+

+νξt−1 cos τ + 1
2 t
−1x1 − κt−1x2,

u2 = |t|−1/2(µw1 + νw3) sin τ + |t|−1/2w2 cos τ+

+νξt−1 sin τ + 1
2 t
−1x2 + κt−1x1,

u3 = |t|−1/2(−νw1 + µw3) + µξt−1 + 1
2 t
−1x3,

p = |t|−1s− 1
2 t
−2ξ2 + 1

8 t
−2R2 + 1

2κ
2t−2r2+

+ε|t|−3/2(νx1 cos τ + νx2 sin τ + µx3),

(23)

where

z1 = |t|−1/2(µx1 cos τ + µx2 sin τ − νx3),

z2 = |t|−1/2(x2 cos τ − x1 sin τ),

ξ = σ(νx1 cos τ + νx2 sin τ + µx3) + 2κν(x2 cos τ − x1 sin τ), τ = κ ln |t|.

4. u1 = |t|−1/2w1 + 1
2 t
−1x1,

u2 = |t|−1/2w2 + 1
2 t
−1x2,

u3 = |t|−1/2w3 + (σ + 1
2)t−1x3,

p = |t|−1s− 1
2σ

2t−2x2
3 + 1

8 t
−2R2 + ε|t|−3/2x3,

(24)

where z1 = |t|−1/2x1, z2 = |t|−1/2x2.

5. u1 = (µw1 + νw3) cos t− w2 sin t+ νξ cos t− x2,

u2 = (µw1 + νw3) sin t+ w2 cos t+ νξ sin t+ x1,

u3 = (−νw1 + µw3) + µξ,

p = s− 1
2ξ

2 + 1
2r

2 + ε(νx1 cos t+ νx2 sin t+ µx3),

(25)

where

z1 = (µx1 cos t+ µx2 sin t− νx3), z2 = (x2 cos t− x1 sin t),

ξ = σ(νx1 cos t+ νx2 sin t+ µx3) + 2ν(x2 cos t− x1 sin t),

6. u1 = w1, u2 = w2, u3 = w3 + σx3, p = s− 1
2σ

2x2
3 + εx3, (26)

where z1 = x1, z2 = x2.
Ansatzes (23)–(26) reduce the NSEs to the system having the following simple general

form:

wiw1
i − w1

ii + s1 + α2w
2 = 0,

wiw2
i − w2

ii + s2 − α2w
1 + α1w

3 = 0,

wiw3
i − w3

ii + α4w
3 + α5 = 0,

wi
i = α3

(27)
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where the constants αn (n = 1, 5) take on the values

4. α1 = ±2κν, α2 = ∓2κµ, α3 = ∓(σ + 3/2), α4 = ±σ, α5 = ε.
5. α1 = 0, α2 = 0, α3 = ∓(σ + 3/2), α4 = ±σ, α5 = ε.
6. α1 = 2ν, α2 = −2µ, α3 = −σ, α4 = σ, α5 = ε.
7. α1 = 0, α2 = 0, α3 = −σ, α4 = σ, α5 = ε.

System (27) was known for some values of αn. Setting αk = 0 (k = 2, 5) in (27), we
obtain equations describing a plane convective flow that is brought about by nonhomo-
geneous heating of boudaries. In this case, wi are the coordinates of the flow velocity
vector, w3 is the flow temperature, s is the pressure, the Grasshoff number λ is equal to
−α1, and the Prandtl number σ is equal to 1. Some similarity solutions of these equations
were constructed in [11]. The particular case of system (27) for α1 = α2 = α4 = α5 = 0
and α3 = 1 was considered in [14]. Moreover, system (27) is obtained as a result of
nondirect reduction of the NSEs by means of noninduced operators too. That is why, we
investigated this system in detail.

For arbitrary values of the αn, system (27) is invariant under the operators ∂1, ∂2, ∂s.
There are nine cases of extending the maximal Lie invariance algebra of (27) by operators
from the span < ∂w3−α1z2∂s, zi∂i−wi∂wi−2s∂s, z1∂2−z2∂1+w1∂w2−w2∂w1 , w3∂w3 > .
If α1 = α4 = α5 = 0, the maximal Lie invariance algebra of (27) contains the operator
w3∂w3 that is not induced by elements from A(NS).

Making the nonlocal transformation

s̃ = s+ α2Ψ, (28)

where Ψ1 = w2, Ψ2 = −w1 (such a function Ψ exists in view of the last equation of (27)),
in system (27) with α3 = 0, we obtain a system of the form (27) with α̃3 = α̃2 = 0.
In some cases (α1 6= 0, α3 = α4 = α5 = 0, α2 6= 0; α1 = α3 = α4 = 0, α2 6= 0),
transformation (28) allows the symmetry of (27) to be extended and non-Lie solutions to
be constructed. Moreover, it means that in the cases listed above, system (27) is invariant
under the nonlocal transformation

ẑi = eεzi, ŵi = e−εwi, ŵ3 = eδεw3, ŝ = e−2εs+ α2(e−2ε − 1)Ψ,

where the parameter δ takes on a fixed value from the set {−3; 0; 2}, depending on the
values of αn.

To reduce system (27) to ODEs, we used the following ansatz:

w1 = a1ϕ
1 − a2ϕ

3 + b1ζ,

w2 = a2ϕ
1 + a1ϕ

3 + b2ζ,

w3 = ϕ2 + b3ζ,

s = h+ d1ζ + d2ωζ + 1
2d3ζ

2,

(29)

where ω = a1z2 − a2z1, ζ = a1z1 + a2z2, ϕa = ϕa(ω), h = h(ω), ai, ba, da, B = const,
a2

1 + a2
2 = 1,

bi = Bai, b3(B + α4) = 0, d2 = α2B − α1b3a1, d3 = −B2 − α1b3a2. (30)
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Indeed, formulae (29) and (30) determine a whole set of ansatzes for system (27). This
set contains both Lie ansatzes, constructed by means of subalgebras of the form

< a1∂1 + a2∂2 + a3(∂w3 − α1z2∂s) + a4∂s >, (31)

and non-Lie ansatzes. Equation (30) is the necessary and sufficient condition to reduce
(27) by means of an ansatz of form (28).

Full Lie reduction of system (27) to ODEs was made by means of the subalgebras that
do not belong to the set of algebras (31).

Let us describe reduction of the NSEs to systems of ODEs briefly. A complete set of
A(NS)-inequivalent three-dimensional subalgebras of A(NS) is exhausted by 52 classes of
algebras. By means of 22 ”good” classes from this set, one can construct ansatzes of codi-
mension three for the Navier-Stokes field. We united the ”good” classes to 8 superclasses.
By means of them, we constructed 8 ansatzes and obtained reduced systems which can
be united to 6 classes. Either general or particular solutions for the reduced systems were
obtained.
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